首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pr3+-doped YF3 (orthorhombic), YO0.80F1.40 (orthorhombic), YOF (rhombohedral), and Y2O3 (cubic) films were synthesized on quartz-glass substrates through pyrolysis of a single-source trifluoroacetate precursor at temperatures between 400° and 900°C in air. Phase-selective deposition was achieved by controlling heating temperature and time. YF3, which formed first from the precursor, was transformed to YO0.80F1.40, YOF, and Y2O3. Photoluminescent properties of Pr3+-doped films were examined using ultraviolet excitation. An intense green photoluminescence was observed in the YOF:Pr3+ film, which was deposited at 700°C, through an efficient charge transfer (O2−–Pr3+) excitation.  相似文献   

2.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

3.
Thin films of yttrium aluminum garnet (YAG, Y3Al5O12) and yttrium iron garnet (YIG, Y3Fe5O12) were synthesized on single-crystal Al2O3 substrates by a modification of spray pyrolysis using a high-temperature inductively coupled plasma at atmospheric pressure (spray–ICP technique). Using this technique, films could be grown at faster rates (0.12 μm/min for YAG and 0.10 μm/min for YIG) than using chemical vapor deposition (0.005–0.008 μm/min for YAG) or sputtering (0.003–0.005 μm/min for YIG). The films were dense and revealed a preferred orientation of (211). The growth of YIG was accompanied by coprecipitation of α-Fe2O3. The coprecipitation, however, could be largely suppressed by preliminary formation of a Y2O3 layer on the substrate.  相似文献   

4.
Y2O2S:Eu red phosphor powders were coated with silica (SiO2), using sol–gel and heterocoagulation techniques. Phosphor powders were dispersed in ethanol with tetraethyl orthosilicate and water. Hydrochloric acid was used to catalyze the sol–gel reaction, and an amorphous film 10–20 nm thick was observed via transmission electron microscopy (TEM). Colloidal SiO2 powders 10–70 nm in size were used, and the SiO2 powder coating was made by controlling pH values in the range of 4.5–8, in which a negatively charged surface of SiO2 powder and a positively charged surface of red phosphor powder were formed. Then, SiO2 powders were adsorbed electrically onto the phosphor powder surface, as evidenced by TEM, dissolution, and zeta potential measurements. Chemical bonding in the coating was studied using electron spectroscopy for chemical analysis and Fourier transform infrared spectroscopy.  相似文献   

5.
Nanometer-sized Al2O3 particles were successfully synthesized as crystalline inclusions by mixing both components to form the nanometer-sized particles and the (Sc,Lu)2(WO4)3 matrices in a crystal lattice by preparing a solid solution of (Sc,Lu)2(WO4)3 and Al2(MoO4)3 and then decomposing the solid solution. The particles were dispersed uniformly and without agglomeration, which is commonly observed with conventional preparation techniques. The average particle size of the Al2O3 was 3.5 nm, and the standard deviation was estimated to be 1.1 nm.  相似文献   

6.
Fe3O4–BaTiO3 composite particles were successfully prepared by ultrasonic spray pyrolysis. A mixture of iron(III) nitrate, barium acetate and titanium tetrachloride aqueous solution were atomized into the mist, and the mist was dried and pyrolyzed in N2 (90%) and H2 (10%) atmosphere. Fe3O4–BaTiO3 composite particle was obtained between 900° and 950°C while the coexistence of FeO was detected at 1000°C. Transmission electron microscope observation revealed that the composite particle is consisted of nanocrystalline having primary particle size of 35 nm. Lattice parameter of the Fe3O4–BaTiO3 nanocomposite particle was 0.8404 nm that is larger than that of pure Fe3O4. Coercivity of the nanocomposite particle (390 Oe) was much larger than that of pure Fe3O4 (140 Oe). These results suggest that slight diffusion of Ba into Fe3O4 occurred.  相似文献   

7.
Electrical properties of CeO2 thin films of different Y2O3 dopant concentration as prepared earlier were studied using impedance spectroscopy. The ionic conductivities of the films were found to be dominated by grain boundaries of high conductivity as compared with that of the bulk ceramic of the same dopant concentration sintered at 1500°C. The film grain-boundary conductivities were investigated with regard to grain size, grain-boundary impurity segregation, space charge at grain boundaries, and grain-boundary microstructures. Because of the large grain boundary and surface area in thin films, the impurity concentration is insufficient to form a continuous highly resistive Si-rich glassy phase at grain boundaries, such that the resistivity associated with space-charge layers becomes important. The grain-boundary resistance may originate from oxygen-vacancy-trapping near grain boundaries from space-charge layers. High-resolution transmission electron microscopy coupled with a trans-boundary profile of electron energy loss spectroscopy gives strong credence to the space-charged layers. Since the conductivities of the films were observed to be independent of crystallographic texture, the interface misorientation contribution to the grain-boundary resistance is considered to be negligible with respect to those of the impurity layer and space-charge layers.  相似文献   

8.
Yttria-partially-stabilized zirconia was atmospherically plasma sprayed by systematically varying the process conditions including carrier gas flow rate, torch power, standoff distance, and Ar/H2 ratio in the plasma gas mixture. The in-flight particle parameters such as temperature, velocity, number, and size were determined using a commercially available diagnostic system. The particle parameters were controlled by the particle trajectory in the plume and plasma jet characteristics. The average temperature and the velocity of particles, which reached their maximum at an intermediate carrier gas flow rate of 3.5 L/min, varied as much as 6% and 25%, respectively, with a 75% variation in the carrier gas flow rate by going from the lowest to the intermediate rates. The average temperature and the velocity of particles were lower for a lower torch power, a higher Ar/H2 ratio, and a larger standoff distance. It was necessary to obtain data on particle populations larger than 1000 for statistically reliable and reproducible information from the diagnostic system.  相似文献   

9.
The electrical conductivities of single crystal and polycrystalline MgAl2O4 and Y3Al5O12 were measured to 1260 K using a three-contact, guard-ring technique. The electrical conduction mechanisms change with temperature, with anomalous oxygen pressure and time-dependent inflections in log σ versus T−1 curves between 900 to 1000 K. The conduction processes of Y3Al5O12 and MgAl2O4 appear to be similar and possibly related to A13+ ion diffusion.  相似文献   

10.
Oriented samples of Al2O3-ZrO2 (Y2O3) eutectics consisting of an alumina matrix with zirconia dispersoids were grown by directional solidification. Preferred growth directions and epitaxial relations were determined from X-ray and electron diffraction analyses. Imaging of interfaces was performed by high-resolution transmission electron microscopy on oriented platelets. Semicoherent interfaces were observed with faceting along crystallographic planes of both phases.  相似文献   

11.
12.
The phase composition of fine ZrO2 and ZrO─Y2O3 powders prepared by the process of spray pyrolysis was detected using XRD. An interesting phenomenon has been observed. In this paper, the influence of the temperature and carrier gas flux on the phase composition of as-prepared powders is described. The formation and transformation mechanisms of the powder phase in the process are also discussed.  相似文献   

13.
The eutectic composition between Y4Al2O9 and Y2O3 was determined using electron probe microanalysis (EPMA) on directionally solidified specimens with hypo- and hypereutectic compositions. The microstructures of the specimens as a function of composition differ considerably with small deviation from the eutectic composition (70.5 mol% Y2O3 and 29.5 mol% Al2O3). Based on the current results and other published data, the pseudobinary system between Al2O3 and Y2O3 is revised.  相似文献   

14.
Rapidly solidified ZrO2 (Y2O3)–Al2O3 powders were prepared by melting fine-particle aggregates in a high-enthalpy plasma flame and then rapidly quenching them in cold water or on a copper chill plate. To ensure complete melting and homogenization of all the particles before quenching, the water-quenching treatment was often repeated two or even three times. The resulting melt-quenched powders and splats displayed a variety of metastable structures, depending on composition and cooling rate. ZrO2-rich material developed an extended solid solution phase, whereas eutectic material formed a nanofibrous or amorphous structure. Under high cooling rate conditions, the ZrO2-rich material developed a nanocomposite structure ( t -ZrO2+α-Al2O) directly by melt-quenching, whereas, more typically, such a structure was developed only after postannealing of the as-quenched metastable material.  相似文献   

15.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

16.
Microstructure of a commercial 3 mol% yttria-doped zirconia nano-particulate powder was observed by transmission electron microscopy, and the distribution of yttrium cation was investigated by energy-dispersive X-ray spectroscopy (EDS) with a probe size less than 1 nm. The cross-sectional high-resolution transmission electron microscopy observations revealed that there are two kinds of particles, consisting of single-phase tetragonal and two phases comprising tetragonal and monoclinic. EDS analysis revealed that yttrium cations segregate to the surface of the tetragonal particle. The origin of tetragonal to monoclinic transformation was considered to be due to external stress during the powder milling process.  相似文献   

17.
In the ZrO2-Cr2O3 system, metastable t -ZrO2 solid solutions containing up to 11 mol% Cr2O3 crystallize at low temperatures from amorphous materials prepared by the hydrazine method. The lattice parameter c decreases linearly from 0.5149 to 0.5077 nm with increased Cr2O3 content, whereas the lattice parameter a is a constant value ( a = 0.5077 nm) regardless of the starting composition. At higher temperatures, transformation (decomposition) of the solid solutions proceeds in the following way: t (ss)→ t (ss) + m + Cr2O3→ m + Cr2O3. Above 11 mol% Cr2O3 addition, c-ZrO2 phases are formed in the presence of Cr2O3. The t -ZrO2 solid solution powders have been characterized for particle size, shape, and surface area. They consist of very fine particles (15–30 nm) showing thin platelike morphology. Dense ZrO2(3Y)-Cr2O3 composite ceramics (∼99.7% of theoretical) with an average grain size of 0.3 μm have been fabricated by hot isostatic pressing for 2 h at 1400°C and 196 MPa. Their fracture toughness increases with increased Cr2O3 content. The highest K Ic value of 9.5 MPa·;m1/2 is achieved in the composite ceramics containing 10 mol% Cr2O3.  相似文献   

18.
Al2O3-ZrO2 eutectics containing 0 to 12.2 mol% Y2O3 (with respect to zirconia) were produced by directional solidification using the laser floating zone (LFZ) method. Processing variables were chosen to obtain homogeneous, colony-free, interpenetrating microstructure for all of the compositional range, optimum from the viewpoint of mechanical properties. The amount of cubic, tetragonal, or monoclinic zirconia phases was determined using a combination of Raman and X-ray diffraction techniques. Monoclinic zirconia was present up to concentrations of 3 mol% Y2O3, while the amount of tetragonal zirconia gradually increased with yttria content up to 3 mol%. Cubic zirconia was the only phase detected when the yttria content reached 12 mol%. The residual stresses in alumina were measured using the shift of the ruby R lines. Compressive stresses were isotropic when measured in the samples containing tetragonal and cubic zirconia, while higher tensile, anisotropic stresses were found when monoclinic zirconia was present. They were partially relieved in the eutectic sample without yttria. These results were compared with a thermoelastic analysis based on the self-consistent model.  相似文献   

19.
The solid-state reaction between yttrium oxide and amorphous silicon oxide with a molar ratio 1:1 has been studied. The effect of several flux materials on conversion at different temperatures (900° to 1300°C) has been investigated. Lithium compounds and especially fluoride gave the highest conversions. Fluorides of cations other than lithium were also powerful fluxes. The purity of the oxyorthosilicate formed was studied by different methods.  相似文献   

20.
119Sn and 29Si solid-state nuclear magnetic resonance studies on lead silicate glasses containing different amounts of SnO2 confirmed that tin exists in the glass as distorted SnO6 polyhedra and there is no direct interaction between tin and silicon structural units. Transmission electron microscopic studies have established that tin structural units are uniformly distributed in the glass. Significant changes in the values of glass transition temperature, microhardness, and thermal expansion coefficient with SnO2 incorporation into the glass have been attributed to the increased rigidity of the glass network brought about by the replacement of weaker Pb–O linkages with stronger Sn–O linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号