首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对单机计算资源不足和提高负荷预测精度,提出一种基于Spark和粒子群优化深度神经网络的短期负荷预测模型.通过引入Spark计算平台,将深度神经网络模型部署在平台上,对深度神经网络模型的网络结构和权重及阈值参数利用粒子群算法优化,再利用优化后的深度神经网络模型预测电力负荷.通过实验分析,结果表明提出的电力负荷预测方法不...  相似文献   

2.
将支持向量回归(SVR)算法引入短期负荷预测,为提高预测速度,根据负荷预测的特点,提出了一种SVR的在线训练算法,该算法通过不断输入新的负荷数据来更新回归函数,以获得更快的计算速度和较好的预测结果.和传统的SVR算法比较,它能在保证精度的同时大大减少支持向量的数目,具有更快的收敛性.仿真结果表明了算法的有效性.  相似文献   

3.
将支持向量回归(SVR)算法引入短期负荷预测,为提高预测速度,根据负荷预测的特点,提出了一种SVR的在线训练算法,该算法通过不断输入新的负荷数据来更新回归函数,以获得更快的计算速度和较好的预测结果。和传统的SVR算法比较,它能在保证精度的同时大大减少支持向量的数目,具有更快的收敛性。仿真结果表明了算法的有效性。  相似文献   

4.
宫毓斌  滕欢 《电测与仪表》2019,56(14):12-16
支持向量机是借助于凸优化技术的统计学习方法,与传统神经网络相比,泛化错误率低并且结果易于解释。将支持向量机用于负荷预测时,参数选择不准确会导致预测性能较差。提出一种基于蚱蜢优化算法的支持向量机短期负荷预测方法,以某地区负荷、天气等历史数据对SVM进行训练,并通过GOA优化选取支持向量机参数,然后以得到的最优参数建立GOA-SVM负荷预测模型。算例分析表明,GOA-SVM预测模型比GA-SVM和PSO-SVM模型有更好的收敛性能,且预测精度更高。  相似文献   

5.
针对最小二乘支持向量机(LSSVM)中参数选取对电力负荷预测精度有着较大的影响,建立了一种基于人工免疫算法优化最小二乘支持向量机的短期电力负荷预测模型,该模型以历史负荷数据作为输入向量,选用高斯径向基函数作为核函数,利用人工免疫算法对LSSVM中的惩罚因子和核参数进行优化选取,极大地提高了LSSVM的训练速度和预测精度。仿真结果表明,该方法在短期电力负荷预测中具有较高的预测精度,证实了该方法的有效性和可行性。  相似文献   

6.
针对电力负荷预测精度不高、效率低的问题,采用算术优化算法(AOA)和最小二乘支持向量机(LSSVM)的模型对经过互补集合经验模态分解(CEEMD)和模糊熵(FE)综合处理后的子序列进行预测,构建了CEEMD-FE-AOA-LSSVM预测模型。首先,利用FE算法对经过CEEMD处理后的各子序列进行熵值重组,该过程提高了模型的抗干扰能力和运算效率。然后,用AOA-LSSVM模型对处理后的子序列进行预测,并将预测叠加输出。最后,通过误差函数对模型进行横向对比和纵向对比,利用两种对比结果来检验其性能。通过实验可知,与CEEMD-LSSVM、AOA-LSSVM、CEEMD-AOA-LSSVM等其他模型相比,CEEMD-FE-AOA-LSSVM组合模型能够兼顾到预测精度与预测效率两方面,做到了综合性能的提升。同时也验证了经过CEEMD或AOA处理的模型能够有效地提升预测精度。  相似文献   

7.
基于改进的PSO-SVM的短期电力负荷预测   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种基于PSO-SVM电力负荷短期预测方法,在SVM学习过程中引入粒子群算法。通过选取组合核函数来改进SVM算法,这样可以充分保证计算速度和较高的预测精度。利用吉林地区的历史负荷数据作为训练样本,通过与传统的SVM预测模型进行对比,对预测结果与实际数据进行比较,证明基于组合核函数预测方法在一定程度上能够保证短期负荷预测的精度。  相似文献   

8.
电力系统负荷预测是电力研究的一个重要组成部分,随着电力智能化的加快发展,为电力负荷预测提供了更准确有效的方法。目前有多种电力负荷预测方法,但由于预测模型适用条件的限制,使得负荷预测存在困难。因此,本文选择了基于统计理论的支持向量回归方法来进行预测。文中结合贵州某经济开发区短期电力负荷的历史数据,应用支持向量回归法对该负荷进行了预测,得到了精度较高的预测结果。  相似文献   

9.
10.
支持向量机是一种新型机器学习算法,它基于结构风险最小化准则取得较小的实际风险,有效提高了泛化能力,具有理论严密、适应性强、全局优化等特点,在模式识别和回归问题等方面应用广泛。以某地区历史负荷数据为输入,通过人群搜索算法对支持向量的各项参数进行寻优计算,得到最优的参数取值,然后把最优参数代入到SVM预测模型中,得到人群搜索算法的支持向量机(SOA-SVM)模型,利用此模型对某地区未来24小时的负荷进行短期预测。通过算例验证,利用SOA-SVM预测的精度要比BP神经网络和PSO-SVM的精度要高,所以说明用此方法进行短期负荷预测是有效和可行的。  相似文献   

11.
电力系统短期负荷预测是电力系统运行管理和实时控制所必须的基本内容,预测结果的准确性对电力系统的安全、优质,经济运行具有重要意义。通过非参数预测法建立电力系统短期负荷预测模型,以此作为Elman神经网络训练的样本集,实现网络样本设计、结构设计与网络训练,充分发挥Elman神经网络动态特性,将改进的遗传算法和Elman神经网络相结合,通过选择,交叉、变异等遗传操作,实现了神经网络权值优化。采用基于遗传优化神经网络的电力系统短期负荷预测新算法,提高了负荷预报精度,具体算例证明了算法的可行性和有效性。  相似文献   

12.
提出了一种新的小波神经元网络(WNN)短期负荷预测方法。小波神经元网络比多层前馈神经网络具有更多自由度和更好的适应性。采用Morlet小波作为激活函数,应用进化算法学习网络的输入和输出之间的非线性关系。为解决小的训练误差并不表现为小的预测误差的问题,提出了一种自学习隶属度分析聚类的训练样本的选择方法。应用2002年某省电网的负荷数据和气象资料建模预测,结果表明本预测模型具有较高的预测精度和运行稳定性,普适性较好。  相似文献   

13.
This paper presents a novel approach to short-time load forecasting by the application of nonparametric regression. The method is derived from a load model in the form of a probability density function of load and load affecting factors. A load forecast is a conditional expectation of load given the time, weather conditions and other explanatory variables. This forecast can be calculated directly from historical data as a local average of observed past loads with the size of the local neighborhood and the specific weights on the loads defined by a multivariate product kernel. The method accuracy relies on the adequate representation of possible future conditions by historical data, but a measure to detect any unreliable forecast can be easily constructed. The proposed procedure requires few parameters that can be easily calculated from historical data by applying the cross-validation technique  相似文献   

14.
提高电力系统短期负荷预测精度有助于提高电网运行的安全性和经济性,改善供电质量。将均匀设计、改进遗传算法和误差反向传播算法相结合构成混合算法,并将其用于短期负荷预测。数据样本训练和实际预测结果表明,该模型不仅可避免陷入局部极小点,而且可提高预测精度和网络训练速度。  相似文献   

15.
Short-term load forecasting is of great significance to the secure and efficient operation of power systems. However, loads can be affected by a variety of external impact factors and thus involve high levels of uncertainties. So it is a challenging task to achieve an accurate load forecast. This paper discusses three commonly-used machine-learning methods used for load forecasting, i.e., the support vector machine method, the random forest regression method, and the long short-term memory neural network method. The features and applications of these methods are analyzed and compared. By integrating the advantages of these methods, a fusion forecasting approach and a data preprocessing technique are proposed for improving the forecasting accuracy. A comparative study based on real load data is performed to verify that the proposed approach is capable of achieving a relatively higher forecasting accuracy.  相似文献   

16.
17.
基于相似日权重的电力系统扩展短期负荷预测   总被引:1,自引:0,他引:1  
扩展短期负荷预测源于滚动发电计划的制定,在原计划与实际负荷发生较大偏离(大于3%)时,精确的扩展短期负荷预测有利于制定科学合理的滚动发电计划.在对当日已有电力负荷特性分析的基础上,运用形系数决定权重的思想,提出了基于相似日权重的扩展短期负荷预测方法.该方法克服了现有预测方法中对各相似日采用相同权重所导致的平滑效应对拐点负荷预测的影响.研究结果表明,该方法在保证运算速度的同时,提高了总体预测准确性和拐点处的预测准确性.  相似文献   

18.
一种基于决策树技术的短期负荷预测算法   总被引:2,自引:0,他引:2  
提出了一种基于决策树技术的短期电力负荷预测新方法,能有效地考虑非负荷因素对短期负荷预测的影响.文中详细介绍了决策树技术的原理及其在短期负荷预测中的实现方法.实际电力系统应用结果数据表明,该方案能够有效提高短期负荷预测的精度.  相似文献   

19.
为了考虑除负荷本身外的其他因素对短期负荷的影响,提出了基于相似度与神经网络的短期协同预测模型.该模型首先通过计算负荷曲线的相似度对历史数据进行排序,然后选择与预测时刻相似度较相近的数据对未来时刻的负荷利用相似度进行预测,对于出现的误差,通过神经网络结合其他因素进行预测纠正.实验结果证明,该协同预测模型较之单纯的BP神经网络预测模型具有较高的预测精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号