首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The adhesive interaction of monocytes and vascular smooth muscle cells (VSMCs) has been suggested to be a regulatory signal in the cellular activation that is involved in the pathogenesis of atherosclerosis. We investigated the effects of monocyte-VSMC interaction on inducible nitric oxide (NO) synthase expression. METHODS: NO production by the cultured cells was determined by measuring the nitrite content of the culture media using the Griess reagent. The expression of inducible NO synthase protein was assayed by Western blotting. RESULTS: Interleukin-1 beta (IL-1 beta) induced nitrite production by VSMCs in a time-dependent manner. The addition of the mouse monocyte cell line J774 to IL-1 beta-stimulated VSMCs further increased nitrite production in a monocyte number-dependent manner. Enhanced nitrite production by coculture was accompanied by increased inducible NO synthase protein accumulation. Addition of tumor necrosis factor-alpha (TNF-alpha) also enhanced IL-1 beta-induced nitrite production by VSMCs, but TNF-alpha showed no effect in the presence of monocytes. Coculture of monocytes and VSMCs in the presence of IL-1 beta secreted substantial amounts of TNF-alpha. The production of nitrite by coculture was markedly inhibited by an anti-TNF-alpha antibody. CONCLUSIONS: The present study revealed that direct cell-to-cell interaction between monocytes and VSMCs enhances NO production, suggesting an important role for their interaction in the pathogenesis of atherosclerosis.  相似文献   

2.
BACKGROUND: Aside from numerous parenchymal and vascular deposits of amyloid beta (A beta) peptide, neurofibrillary tangles, and neuronal and synaptic loss, the neuropathology of Alzheimer's disease is accompanied by a subtle and chronic inflammatory reaction that manifests itself as microglial activation. However, in Alzheimer's disease, alterations in the permeability of the blood-brain barrier and chemotaxis, in part mediated by chemokines and cytokines, may permit the recruitment and transendothelial passage of peripheral cells into the brain parenchyma. MATERIALS AND METHODS: Human monocytes from different donors were tested for their capacity to differentiate into macrophages and their ability to secrete cytokines and chemokines in the presence of A beta 1-42. A paradigm of the blood-brain barrier was constructed utilizing human brain endothelial and astroglial cells with the anatomical and physiological characteristics observed in vivo. This model was used to test the ability of monocytes/macrophages to transmigrate when challenged by A beta 1-42 on the brain side of the blood-brain barrier model. RESULTS: In cultures of peripheral monocytes, A beta 1-42 induced the secretion of proinflammatory cytokines TNF-alpha, IL-6, IL-1 beta, and IL-12, as well as CC chemokines MCP-1, MIP-1 alpha, and MIP-1 beta, and CXC chemokine IL-8 in a dose-related fashion. In the blood-brain barrier model, A beta 1-42 and monocytes on the brain side potentiated monocyte transmigration from the blood side to the brain side. A beta 1-42 stimulated differentiation of monocytes into adherent macrophages in a dose-related fashion. The magnitude of these proinflammatory effects of A beta 1-42 varied dramatically with monocytes from different donors. CONCLUSION: In some individuals, circulating monocytes/macrophages, when recruited by chemokines produced by activated microglia and macrophages, could add to the inflammatory destruction of the brain in Alzheimer's disease.  相似文献   

3.
1. The ability of the coumarin derivative cloricromene (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxy- carbonylmethoxycoumarin) to inhibit monocyte adhesion to human cultured umbilical vein endothelial cells (HUVEC) was investigated. 2. Cloricromene (10-200 microM) inhibited, in a concentration-dependent manner, the adhesion of both resting and activated monocytes to HUVEC. Significant inhibition was reached with drug concentrations ranging between 15 to 30 microM. 3. The inhibitory activity was, at least in large part, directed to monocytes since no inhibition was observed after selective preincubation of HUVEC with cloricromene and the drug maintained its effect also on monocyte adhesion to paraformaldehyde-treated HUVEC. 4. Inhibition was maximal after 1 min of exposure of monocytes to cloricromene and persisted even in the absence of the drug. 5. Both basal and chemoattractant-mediated monocyte adhesion was inhibited by cloricromene as it was by TS1/18, a monoclonal antibody (mAb) directed to beta 2 integrins; however, cytofluorimetric analysis showed that cloricromene was unable to modulate the expression of beta 2 integrins on the monocyte surface. 6. When monocyte adhesion was mediated by a large set of adhesive receptors, as obtained after treatment of HUVEC with either interleukin 1 beta (IL-1; 50 ng ml-1) or tumour necrosis factor-alpha (TNF; 100 u ml-1), the inhibitory effect of cloricromene was considerably reduced. 7. The results of this study show that cloricromene may regulate monocyte adhesion to HUVEC, an event relevant in vivo in the pathogenesis of inflammatory and atherosclerotic processes.  相似文献   

4.
The overall fibrinolytic activity is depressed in patients with chronic renal failure where a prothrombotic state is described, thereby enhancing the risk of vascular occlusive events. The mechanism responsible for fibrinolysis derangement has not yet been elucidated. To evaluate the effect of the uremic environment on the fibrinolytic activity of endothelial cells, we studied plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) production by human umbilical vein endothelial cells (HUVEC) in culture, exposed either to uremic or normal sera, before and after cytokine stimulation. Twenty uremics were studied: 11 were on conservative dietary treatment and nine were on maintenance hemodialysis. Eight healthy subjects served as controls. Before cytokine stimulation, no difference in the HUVEC supernatant concentration of t-PA and PAI-1 was found among the groups studied. After stimulation with interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha, the HUVEC supernatant levels of PAI-1 in the uremics were higher than in the controls, whereas the supernatant levels of t-PA did not differ. Our data provide evidence that uremic serum, in concert with IL-1 or TNF-alpha, can enhance PAI-1 secretion by endothelial cells, thereby depressing the fibrinolytic system. This impaired endothelial fibrinolytic response to hypercoagulation could favor vascular events, which are the major cause of morbidity and mortality in patients with chronic uremia.  相似文献   

5.
We previously identified the structural requirement for the inhibitory activity of Leishmania lipophosphoglycan (LPG) to block endothelial adhesion to monocytes. Here we showed that LPG reduces transendothelial migration of monocytes. LPG pretreatment of endothelial cells (2 microM, 1 h) reduced monocyte migration across endothelial cells activated by bacterial endotoxin (LPS) or IL-1beta (60 and 46%, respectively). A fragment of LPG (i.e., repeating phosphodisaccharide (consisting of galactosyl-mannose)) and LPG coincubated with LPG-neutralizing mAb lacks inhibitory activity on monocyte migration. Pretreatment of monocytes with LPG (2 microM, 1 h) also did not affect monocyte migration through control or LPS-activated endothelial cells. FACS analysis reveals that LPG treatment blocked the LPS-mediated expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells and monocyte adhesion without altering the integrity of the endothelial monolayer. LPG (2 microM, 1 h) alone was capable of altering the expression and distribution of two junctional adhesion molecules, CD31 and vascular endothelium cadherin, as well as reversing the effects of LPS on these proteins. The induction of endothelial cells by LPS to transcribe and release monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by LPG (40-65%). LPG treatment of nonactivated endothelial cells also suppressed by 55 to 75% the monocyte migration triggered by a MCP-1 chemoattractant gradient, and coincubation of LPG with neutralizing mAb abrogated the inhibitory activity. Together, these data point to a novel anti-inflammatory function of LPG in reducing monocyte migration across endothelial cells via a mechanism of inhibition of endothelial expression of cell adhesion molecules, modulation of intercellular junctional proteins, and synthesis of MCP-1.  相似文献   

6.
7.
8.
OBJECTIVE: To evaluate the effect of gliclazide administration to NIDDM patients on 1) monocyte adhesion to cultured endothelial cells, 2) plasma cytokine and lipid peroxide levels, and 3) monocyte cytokine production. RESEARCH DESIGN AND METHODS: Poorly controlled glyburide-treated diabetic patients (n = 8) and healthy control subjects (n = 8) were recruited. At the beginning of the study, glyburide was replaced by an equivalent hypoglycemic dose of gliclazide. Serum and monocytes were isolated from blood obtained from control and diabetic subjects before and after 3 months of treatment with gliclazide. RESULTS: Plasma lipid peroxide levels and monocyte adhesion to endothelial cells are enhanced in NIDDM patients, and gliclazide administration totally reverses these abnormalities. Before gliclazide treatment, serum levels of cytokines did not differ in the control and the diabetic groups, with the exception of an enhancement of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL)-6 in NIDDM subjects. Basal and lipopolysaccharide (LPS)-stimulated monocyte production of interleukin-1 beta, IL-6, and IL-8 did not differ between the two groups. Furthermore, basal monocyte production of TNF-alpha was similar in the control and the diabetic groups, whereas a marked increase in the LPS-stimulated monocyte production of TNF-alpha was observed in the NIDDM group. Gliclazide treatment lowered LPS-stimulated TNF-alpha production by diabetic monocytes to levels similar to those observed in control subjects. CONCLUSIONS: Gliclazide administration to NIDDM patients inhibits the increased adhesiveness of diabetic monocytes to endothelial cells and reduces the production of TNF-alpha by these cells. These results suggest that treatment of NIDDM subjects with gliclazide may be beneficial in the prevention of atherosclerosis associated with NIDDM.  相似文献   

9.
BACKGROUND: Elevated levels of lipoprotein(a) [Lp(a)] are associated with premature atherosclerosis; however, the mechanisms are not known. Recruitment of monocytes to the blood vessel wall is an early event in atherogenesis. METHODS AND RESULTS: This study has found that unoxidized Lp(a) induced human umbilical vein endothelial cells (HUVECs) to secrete monocyte chemotactic activity (MCA), whereas LDL under the same conditions did not. In the absence of HUVECs, Lp(a) had no direct MCA. Endotoxin was shown not to be responsible for the induction of MCA. Actinomycin D and cycloheximide inhibited the HUVEC response to Lp(a), indicating that protein and RNA synthesis were required. The apolipoprotein(a) [apo(a)] portion of Lp(a) was identified as the structural component of Lp(a) responsible for inducing MCA. Lp(a) and apo(a) also stimulated human coronary artery endothelial cells to produce MCA. Granulocyte-monocyte colony-stimulating factor (GM-CSF) antigen was not detected in the Lp(a)-conditioned medium, nor was monocyte chemoattractant protein-1 mRNA induced in HUVECs by Lp(a). CONCLUSIONS: These findings suggest that Lp(a) may be involved in the recruitment of monocytes to the vessel wall and provide a novel mechanism for the participation of Lp(a) in the atherogenic process.  相似文献   

10.
11.
Recently we reported that monocyte migration through a barrier of human synovial fibroblasts (HSF) is mediated by the CD11/CD18 (beta2) integrins, and the beta1 integrins VLA-4 and VLA-5 on monocytes. Here we investigated in parallel the role of beta2 integrin family members, LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) on monocytes, and the immunoglobulin supergene family members, ICAM-1 and ICAM-2 on HSF and on human umbilical vein endothelial cells (HUVEC), in monocyte migration through HSF and HUVEC monolayers. Using function blocking monoclonal antibodies (mAb), when both VLA-4 and VLA-5 on monocytes were blocked, treatment of monocytes with mAb to both LFA-1 and to Mac-1 completely inhibited monocyte migration across HSF barriers, although blocking either of these beta2 integrins alone had no effect on migration, even when VLA-4 and VLA-5 were blocked. This indicates that optimal beta2 integrin-dependent monocyte migration in synovial connective tissue may be mediated by either LFA-1 or Mac-1. Both ICAM-1 and ICAM-2 were constitutively expressed on HSF and on HUVEC, although ICAM-2 was only minimally expressed on HSF. Based on results of mAb blockade, ICAM-1 appeared to be the major ligand for LFA-1-dependent migration through the HSF. In contrast, both ICAM-1 and ICAM-2 mediated LFA-1-dependent monocyte migration through HUVEC. However, neither ICAM-1 nor ICAM-2 was required for Mac-1 -dependent monocyte migration through either cell barrier, indicating that Mac-1 can utilize ligands distinct from ICAM-1 and ICAM-2 on HSF and on HUVEC during monocyte transmigration.  相似文献   

12.
BACKGROUND: For the present study, we hypothesized that fibrin is an inducer of tissue factor (TF) expression in vascular endothelial cells in vitro and in vivo. METHODS AND RESULTS: To test the in vitro aspect of this hypothesis, human umbilical vein endothelial cells (HUVECs) were cocultured with physiologically relevant concentrations of fibrin (0.03 to 1.0 mg fibrin/mL) for various times (0.5 to 24 hours), and TF expression was compared with that in unstimulated HUVECs (media control). Results demonstrated that fibrin induced a time- and dose-dependent increase in TF antigen expression, functional TF procoagulant activity, and TF mRNA in HUVECs. CONCLUSIONS: These studies demonstrate that fibrin can directly regulate TF expression in HUVECs in vitro.  相似文献   

13.
Although endothelial cells have been speculated to be a target in the pathogenesis of dengue hemorrhagic fever (DHF), there has been little evidence linking dengue virus infection to any alteration in endothelial cell function. In this study, we show that human umbilical vein endothelial cells become activated when exposed to culture fluids from dengue virus-infected peripheral blood monocytes. Maximum activation was achieved with culture fluids from monocytes in which virus infection was enhanced by the addition of dengue virus-immune serum, thus correlating with epidemiological evidence that prior immunity to dengue virus is a major risk factor for DHF. Activation was strongest for endothelial cell expression of VCAM-1 and ICAM-1. In contrast, activation of endothelial cell E-selectin expression appeared to be more transient, as indicated by its detection at 3 h, but not at 16 h, of treatment. Treatment of monocyte culture fluids with anti-tumor necrosis factor alpha (TNF-alpha) antibody largely abolished the activation effect (as measured by endothelial cell expression of ICAM-1), whereas treatment with IL-1beta receptor antagonist had a much smaller inhibitory effect on activation. Endothelial cells inoculated directly with dengue virus or with virus-antibody combinations were poorly infectable (compared to Vero cells or peripheral blood monocytes), and virus-inoculated endothelial cells showed no increased expression of VCAM-1, ICAM-1, or E-selectin. Taken together, the results strongly indicate that dengue virus can modulate endothelial cell function by an indirect route, in which a key intermediary is TNF-alpha released from virus-infected monocytes.  相似文献   

14.
Polymorphonuclear leukocytes (PMNs) and endothelial cells interact at sites of vascular injury during inflammatory response and during the development of atherosclerotic lesions. Such close proximity leads to the modulation of several of the biological functions of the 2 cell types. Because we have shown previously that PMNs enhance release of growth factors from resting endothelial cells, we decided to evaluate whether coincubation of PMNs with interleukin-1beta (IL-1beta)-stimulated human umbilical vein endothelial cells (HUVEC) could further modulate mitogen release from HUVEC. We found that PMN-HUVEC coincubation resulted in a 10-fold increase in mitogen release, compared with HUVEC alone (14+/-6 versus 1.3+/-0.1). When PMNs were incubated with IL-1beta-treated HUVEC, a further increase in mitogen release (up to 35-fold) was observed. The mitogenic activity was immunologically related to platelet-derived growth factor (PDGF) because the activity was abolished by an anti-PDGF antibody. PDGF-AB antigen, detected in low concentrations in conditioned medium from HUVEC alone, was increased 4-fold when IL-1beta or PMNs were incubated with HUVEC and dramatically upregulated (up to 40-fold) when PMNs were cocultured with IL-1beta-treated HUVEC. The presence of the protease inhibitor eglin C abolished mitogenic activity generation, suggesting a role for PMN-derived elastase and cathepsin G. Indeed, purified elastase and cathepsin G mimicked PMN-induced mitogen release from HUVEC. Because PMNs firmly adhered to IL-1beta-treated HUVEC, we investigated the role of cell-cell adhesion in mitogen release. Adhesion and PDGF release were inhibited by approximately 60% in the presence of anti-CD11a/CD18 and anti-intercellular adhesion molecule-1 monoclonal antibodies. This study suggests a new role for PMNs and their interaction with endothelium in pathological conditions in which intimal hyperplasia is a common feature.  相似文献   

15.
A prominent feature of Lyme disease is the perivascular accumulation of mononuclear leukocytes. Incubation of human umbilical vein endothelial cells (HUVEC) cultured on amniotic tissue with either interleukin-1 (IL-1) or Borrelia burgdorferi, the spirochetal agent of Lyme disease, increased the rate at which human monocytes migrated across the endothelial monolayers. Very late antigen 4 (VLA-4) and CD11/CD18 integrins mediated migration of monocytes across HUVEC exposed to either B. burgdorferi or IL-1 in similar manners. Neutralizing antibodies to the chemokine monocyte chemoattractant protein 1 (MCP-1) inhibited the migration of monocytes across unstimulated, IL-1-treated, or B. burgdorferi-stimulated HUVEC by 91% +/- 3%, 65% +/- 2%, or 25% +/- 22%, respectively. Stimulation of HUVEC with B. burgdorferi also promoted a 6-fold +/- 2-fold increase in the migration of human CD4(+) T lymphocytes. Although MCP-1 played only a limited role in the migration of monocytes across B. burgdorferi-treated HUVEC, migration of CD4(+) T lymphocytes across HUVEC exposed to spirochetes was highly dependent on this chemokine. The anti-inflammatory cytokine IL-10 reduced both migration of monocytes and endothelial production of MCP-1 in response to B. burgdorferi by approximately 50%, yet IL-10 inhibited neither migration nor secretion of MCP-1 when HUVEC were stimulated with IL-1. Our results suggest that activation of endothelium by B. burgdorferi may contribute to formation of the chronic inflammatory infiltrates associated with Lyme disease. The transendothelial migration of monocytes that is induced by B. burgdorferi is significantly less dependent on MCP-1 than is migration induced by IL-1. Selective inhibition by IL-10 further indicates that B. burgdorferi and IL-1 employ distinct mechanisms to activate endothelial cells.  相似文献   

16.
Upregulation of adhesion molecule expression on endothelial cells (EC) and circulating leukocytes, by locally produced inflammatory mediators, may result in the enhanced infiltration of leukocytes into tissue, e.g. the airways of asthma patients. The present study investigates whether the expression of adhesion molecules on granulocytes and monocytes from asthma patients is affected by chemotactic factors, i.e. interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1). Flow cytometric analysis showed that the intrinsic expression of the various adhesion molecules on peripheral blood phagocytes from asthma patients was not different from that of healthy individuals. However, stimulation of monocytes with MCP-1 resulted only in upregulation of the expression of CD14 on monocytes from symptomatic asthma patients but not on monocytes from asymptomatic asthma patients and healthy individuals. Stimulation of granulocytes with IL-8 did not change the expression of the various beta 1- and beta 2-integrin molecules, such as VLA-4, LFA-1, CR3 and p150,95. Since earlier studies have shown that CD14 on monocytes mediates monocyte adhesion to activated vascular EC the present findings suggest that during the active phase of asthma upregulation of CD14 on monocytes by MCP-1 may lead to an increased adhesion of monocytes to vascular endothelium and their subsequent transendothelial migration into the tissue of the airways.  相似文献   

17.
The capacity of APC to stimulate the proliferation of human peripheral blood T cells decreases upon ultraviolet-B (UVB) irradiation. The aim of this study was to investigate whether all T cell subsets are equally sensitive to this reduced APC function. Established human Th1, Th2, and Th0 clones were stimulated with monocytes in a soluble CD3 mAb-mediated assay that is dependent on the presence of APC. Monocytes were exposed to low nonlethal doses of UVB radiation before coculture with T cells. UVB irradiation inhibited the capacity of monocytes to stimulate the proliferation and IFN-gamma production of Th1 cells in a dose-related fashion. In contrast, UVB-treated monocytes induced normal proliferation and IL-4 production in Th2 cells. Stimulation of Th0 cell proliferation by UVB-irradiated monocytes was normal, but a preferential suppression of IFN-gamma production was observed, thus leading to a more Th2-like cytokine response. The loss of Th1 proliferation upon stimulation with UVB-irradiated monocytes could be overcome by rIL-2; however, IFN-gamma production remained suppressed. IFN-gamma production could be completely restored by rIL-12, whereas the addition of IL-1 beta, TNF-alpha, or indomethacin had no such effect, nor did the addition of mAb to CD28, added to compensate for the reduced B7 expression of UVB-irradiated monocytes. Monocytes exposed to UVB radiation exhibited reduced expression of mRNA for the IL-1 2 subunits p35 and p40 and suppressed production of the IL-12 p70 protein. Our results thus indicate that UVB irradiation of APC selectively impairs Th1-like responses, a phenomenon caused by the UVB-induced suppression of monocyte IL-12 production.  相似文献   

18.
Platelets, activated by various agonists, produce microparticles (MP) from the plasma membrane, which are released into the extracellular space. Although the mechanism of MP formation has been clarified, their biological importance remains ill defined. We have recently shown that platelet-derived MP influence platelet and endothelial cell function. In this study, we have further examined the mechanism of cellular activation by platelet MP. To address the possibility that they may influence monocyte-endothelial interactions, we used an in vitro assay to examine their effects on the adhesion of monocytes to human umbilical vein endothelial cells (HUVEC). Platelet MP increased the adhesion of monocytes to HUVEC in a time- and dose-dependent manner. Maximal adhesion of monocytes to resting HUVEC was observed after 24 h of stimulation with MP. Similar kinetics were observed with U-937 (human promonocytic leukemia) cells, used as a model for the blood-borne monocyte. Maximal adhesion of resting monocytes to MP-stimulated HUVEC was observed after 5 h of stimulation with MP. The EC50s for MP-induced increases in HUVEC, monocyte, and U-937 cell adhesion is 8.74, 43.41, and 10.83 microg/ml of MP protein, respectively. The induction of monocyte-endothelial adhesion was mimicked by arachidonic acid isolated from MP. The observed increased cellular adhesiveness correlated with MP-induced upregulation of cell adhesion molecules. MP-stimulated HUVEC increased intracellular cell adhesion molecule-1 (ICAM-1) but not vascular cell adhesion molecule-1 (VCAM-1), P-, or E-selectin expression. Monocyte and U-937 lymphocyte function-associated antigen-1 (CD11a/CD18) and macrophage antigen-1 (CD11b/ CD18, alpham/beta2) were both upregulated upon MP stimulation, but an increase in p150,95 (CD11c/CD18), very late antigen-1, or ICAM-1 expression was not observed. The functional importance of these changes was demonstrated with blocking antibodies. MP also induced the chemotaxis of U-937 cells in a dose-dependent manner with an EC50 of 4.40 microg/ml of MP protein. Similarly, arachidonic acid isolated from MP mimicked the chemotactic response. A role for PKC was implicated in both adhesion and chemotaxis. GF 109203X, a specific inhibitor of PKC, significantly reduced monocyte-endothelial adhesion, as well as U-937 chemotaxis. The demonstration that platelet MP may modulate important aspects of endothelial and monocyte function provides a novel mechanism by which platelets may interact with such cells in human atherosclerosis and inflammation.  相似文献   

19.
Stimulation of human monocytes with LPS induces expression of multiple cytokines, including TNF-alpha, IL-1 beta, IL-6, and IL-10, IL-10 expression is delayed relative to that of TNF-alpha, IL-1 beta, and IL-6. Furthermore, IL-10 feedback inhibits expression of TNF-alpha, IL-1 beta, and IL-6, thus providing an efficient autocrine mechanism for controlling proinflammatory cytokine production in monocytes. The Th1-type lymphokine, IFN-gamma, markedly up-regulates TNF-alpha production in monocytes. However, the precise mechanism by which IFN-gamma mediates this effect is unknown. We examined the effects of IFN-gamma on IL-10 expression in LPS-stimulated monocytes, and the relationship between IL-10 and TNF-alpha production in these cells. LPS stimulation induced rapid, ordered expression of multiple cytokines. Steady-state mRNA levels for TNF-alpha increased rapidly, reached maximal levels by 2 to 3 h poststimulation, and then declined sharply. IL-1 beta and IL-6 mRNA levels also increased markedly following stimulation with LPS, but decreased more slowly than did TNF-alpha. Down-regulation of mRNA for TNF-alpha, IL-1 beta, and IL-6 coincided with a delayed and more gradual increase in IL-10 mRNA levels. Furthermore, neutralization of IL-10 with anti-IL-10 Abs prolonged TNF-alpha mRNA expression, and significantly increased net TNF-alpha production. IFN-gamma suppressed expression of IL-10 mRNA and protein in a dose-dependent manner. Moreover, inhibition of IL-10 production correlated with a marked increase in both the magnitude and duration of TNF-alpha expression. Thus, potentiation of TNF-alpha production by IFN-gamma in monocytes is coupled to inhibition of endogenous IL-10 expression.  相似文献   

20.
A protein kinase C (PKC) agonist selective for the beta I isozyme, 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), induced NF-kappa B-like binding activity and surface expression of E-selectin and VCAM-1 in human umbilical vein endothelial cells (HUVEC), similar to the effects of tumor necrosis factor-alpha (TNF-alpha). Induction of E-selectin and VCAM-1 expression by dPPA was completely inhibited by the PKC inhibitors staurosporine and Ro31-7549. The PKC inhibitors also reduce TNF-alpha-induced VCAM-1 expression. However, neither dPPA nor TNF-alpha translocated PKC from the cytosolic to the plasma or nuclear membrane particulate fractions in HUVEC. These results indicate that activation of the beta I PKC isozyme is sufficient for expression of E-selectin and VCAM-1, and suggest that PKC may mediate the effects of TNF-alpha and dPPA without requiring the translocation normally associated with activation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号