首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine’s operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.  相似文献   

2.
A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system’s refrigerant allowed the cold side of the system’s thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.  相似文献   

3.
Thermoelectric Power Generation System Using Waste Heat from Biomass Drying   总被引:1,自引:0,他引:1  
This paper looks at thermoelectric power generation from waste heat from a biomass drier. In this study, the researchers selected four thermoelectric modules: two thermoelectric cooling modules (Model A: MT2-1,6-127 and Model B: TEC1-12708) and two thermoelectric power generation modules (Model C: TEP1-1264-3.4 and Model D: TEG1-1260-5.1) for testing at temperatures between 25°C and 230°C. Test results indicated that the thermoelectric TEC1-12708 could generate a maximum power output of 1 W/module and TEP1-1264-3.4, TEG1-1260-5.1, and MT2-1,6-127 could generate 1.07 W/module, 0.88 W/module, and 0.76 W/module, respectively. Therefore, the thermoelectric cooling of TEC1-12708 was appropriate to use for thermoelectric power generation from waste heat. The experiments used four ventilation fans (6 W, 2.50 m3/s) and 12 thermoelectric modules which were installed in the back of a charcoal brazier. The experiments were conducted and tested in conditions of recycling 100%, 75%, 50%, and 25% of outlet air. Testing results identified that the temperatures of the drying room were 81°C, 76°C, 70°C, and 64°C, respectively. The power generation system could generate about 22.4 W (14 V, 1.6 A) with an air flow of 9.62 m3/s. The thermoelectric module can convert 4.08% of the heat energy to electrical energy.  相似文献   

4.
We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures (T cold = 25°C to 90°C, T hot < 450°C) and mechanical loading (P = 0 N to 104 N). The proposed instrument is able to monitor the temperature and electrical output of the TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.  相似文献   

5.
Results are presented on creation of novel methods for reduction of errors in measured properties of thermoelectric materials obtained by using object-oriented computer simulation for study of real physical models of the absolute method. The effects of radiation, heat losses along the electrodes, design elements of the measurement setup, non-dot-matrix of probes and sensors, and imperfection of thermal and electric contacts have been determined. Methods of eliminating errors due to these effects have been developed. Automated measuring equipment for complex study of thermoelectric material properties has been created, offering accuracy in thermoelectric figure of merit determination several times higher than conventional analogs. Values of errors obtained during measurements of Bi-Te-based materials within the temperature range from 30°C to 500°C include ~0.5% for electrical conductivity, ~0.7% for thermoelectromotive force, ~3% for thermal conductivity, and ~4.7% for figure of merit (Z). The dynamic processes of achieving steady-state measurement conditions and possible errors due to deviations from these conditions are investigated. Functions of current through the sample, reference heater, and radiation shield heater are determined, whereby measurement speed is increased, which is of particular importance for investigation of large-size samples, such as parts of thermoelectric material ingots.  相似文献   

6.
This paper describes the development and testing of a thermoelectric generator (TEG) using the exhaust heat of a 50-kW stationary diesel power plant. The generator consists of six units that represent primary generators for each diesel engine cylinder. Each primary generator comprises five sections with gas heat exchangers, thermoelectric modules, and liquid heat exchangers. The sections were optimized for the exhaust gas operating temperatures. The generator electric power was 2.1 kW at rated power of 2.2 kW, corresponding to 4.4% of the diesel plant electric power.  相似文献   

7.
In this paper, design details, theoretical analysis, and outcomes of a preliminary experimental investigation on a concentrator thermoelectric generator (CTEG) utilizing solar thermal energy are presented. The designed CTEG system consisted of a parabolic dish collector with an aperture diameter of 1.8 m used to concentrate sunlight onto a copper receiver plate with 260 mm diameter. Four BiTe-based thermoelectric cells (TEC) installed on the receiver plate were used to convert the concentrated solar thermal energy directly into electric energy. A microchannel heat sink was used to remove waste heat from the TEC cold side, and a two-axis tracking system was used to track the sun continuously. Experimental tests were conducted on individual cells and on the overall CTEG system under different heating rates. Under maximum heat flux, a single TEC generator was able to produce 4.9 W for a temperature difference of 109°C, corresponding to 2.9% electrical efficiency. The overall CTEG system was able to produce electric power of up to 5.9 W for a 35°C temperature difference with a hot-side temperature of 68°C. The results of the investigation help to estimate the potential of the CTEG system and show concentrated thermoelectric generation to be one of the potential options for production of electric power from renewable energy sources.  相似文献   

8.
This paper presents the design of a compact (~1 cm3) thermoelectric (TE) generator intended to generate power locally for sensor/electronic device applications using hot gases (~100°C to 400°C). The design employs 13-mm-diameter, ~0.36-mm-thick (48 mm3) silicon-micromachined TE modules that are stacked to form a cylindrical, finned heat exchanger. The stacked structure is intended to establish a large, uniform temperature gradient across radially oriented thermopiles in each module. Analytical heat transfer and electrical circuit models are used to design and optimize the thermopile for maximum output power under microfabrication and system-level constraints. Optimized structures using PbTe and Bi2Te3 thin films are predicted to achieve output power levels of 1.3 mW per module (26.7 mW/cm3) and 0.83 mW per module (17.4 mW/cm3), respectively, for hot gas at 400°C.  相似文献   

9.
Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for the development and application of thermoelectric generators, particularly for the design and optimization of TE modules.  相似文献   

10.
Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.  相似文献   

11.
High-temperature-stable thermoelectric generator modules (TGMs) based on nanocrystalline silicon have been fabricated, characterized by the Harman technique, and measured in a generator test facility at the German Aerospace Center. Starting with highly doped p- and n-type silicon nanoparticles from a scalable gas-phase process, nanocrystalline bulk silicon was obtained using a current-activated sintering technique. Electrochemical plating methods were employed to metalize the nanocrystalline silicon. The specific electrical contact resistance ρ c of the semiconductor–metal interface was characterized by a transfer length method. Values as low as ρ c < 1 × 10?6 Ω cm2 were measured. The device figure of merit of a TGM with 64 legs was approximately ZT = 0.13 at 600°C as measured by the Harman technique. Using a generator test facility, the maximum electrical power output of a TGM with 100 legs was measured to be roughly 1 W at hot-side temperature of 600°C and cold-side temperature of 300°C.  相似文献   

12.
High-Temperature High-Efficiency Solar Thermoelectric Generators   总被引:3,自引:0,他引:3  
Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000°C to 100°C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.  相似文献   

13.
Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.  相似文献   

14.
A recent investigation was carried out to evaluate the level of mechanical stress generated in a thermoelectric (TE) module subjected to a temperature gradient. The study was based on the numerical simulation of the thermomechanical behavior of realistic TE generator modules under various operating conditions and leg lengths. By the use of finite element analysis the behavior of large modules (30 × 30 mm2 and 40 × 40 mm2) was examined under realistic boundary conditions at the heat exchange interfaces. For example, the module was constrained between two rigid plates under a given compressive load, and different sliding conditions were assessed. The plastic deformation of the soldering alloys was shown to reduce the amount of stress in the legs. One of the main results indicated that an increase in the maximum stress values appeared in the legs as they were closer to the edges. For such large modules, the simulation predicted a measurable displacement of the ceramic plates between the center and the edges of the module under steady state operation with a temperature difference of 100°C. We provide a satisfactory experimental validation by optical profiler measurements.  相似文献   

15.
The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.  相似文献   

16.
In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.  相似文献   

17.
Previously, the Institute of Thermoelectricity has created Bi2Te3-based modules with an efficiency of ~7% in the temperature range of 30°C to 300°C, with legs that employed homogeneous thermoelectric materials. Herein, we present the results of development of such modules with legs made of inhomogeneous materials. Based on the theory of optimal control and object-oriented computer technology, programs to determine the requirements for material properties in the inhomogeneous legs were created. It was established that introduction of inhomogeneity in the form of continuous and step changes in three-segment n- and p-type legs yields almost identical efficiency increases of about 15%. Use of two segments reduces this value of 10% to 12%. Modules with two-segment legs encapsulated in thin-walled metal cases filled with inert gas have been built, yielding improved efficiency of 7.8% to 8%.  相似文献   

18.
Lead telluride-based materials demonstrate the highest thermoelectric performance in the temperature range from 200°C to 400°C, and they are of interest for numerous waste heat recovery applications. Unfortunately, these conventionally grown materials are usually very brittle, which results in significant material loss during module manufacturing and a decrease in module reliability when subjected to continuous vibrations common for automotive applications. We present a hot extrusion process developed for the first time for PbTe which yields polycrystalline materials with strong mechanical properties combined with high thermoelectric performance. n-Type lead telluride was extruded from conventionally synthesized and powdered material at temperatures in the range of 450°C to 520°C depending on material stoichiometry. The extruded rods were of cylindrical shape with 2.54?cm diameter and lengths up to 40?cm. Young??s modulus measured using mechanical spectroscopy varied from 59?GPa to 51?GPa for temperatures in the range of 20°C to 300°C. Slicing and dicing of extruded rods to obtain cubical samples with 2?mm side demonstrated no difficulties, illustrating the material homogeneity and its potential for manufacturing module legs. The microstructure of the material was studied by scanning electron microscopy. Doping with antimony iodide during the milling process controls the conduction electron concentration in the range from 1?×?1019?cm?3 to 6?×?1019?cm?3. For optimized doping of 0.08?wt.% SbI3, the maximum thermoelectric figure of merit (ZT) reaches a value of 0.99 at 380°C, as measured by the Harman method. The combination of high thermoelectric performance and improved fracture toughness makes this novel hot-extruded polycrystalline PbTe material highly competitive for many applications.  相似文献   

19.
Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5-μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW−1 to 4.3 m2 K MW−1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m−3 K−1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.  相似文献   

20.
Waste heat recovery—for example, in automotive applications—is a major field for thermoelectric research and future application. Commercially available thermoelectric modules are based on planar structures, whereas tubular modules may have advantages for integration and performance in the field of automotive waste heat recovery. One major drawback of tubular generator designs is the necessity for ring-shaped legs made from thermoelectric material. Cutting these geometries from sintered tablets leads to considerable loss of thermoelectric material and therefore high cost. Direct sintering of ring-shaped legs or tubes of thermoelectric material is a solution to this problem. However, sintering such rings with high homogeneity and density faces some difficulties related to the mechanical properties of typical thermoelectric materials such as lead telluride (PbTe)—particularly brittleness and high coefficient of thermal expansion. This work shows a process for production of thermoelectric rings made of p- and n-doped PbTe. Long tubes of PbTe have been sintered in a current-assisted sintering process with specially designed sintering molds, coated with a diffusion barrier, and finally cut into ring-shaped slices. To demonstrate the technology, a tubular thermoelectric module has been assembled using these PbTe rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号