首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A BiCu2PO6 microwave dielectric ceramic was prepared using a solid-state reaction method. As the sintering temperature increased from 800°C to 880°C, the bulk density of BiCu2PO6 ceramic increased from 6.299 g/cm3 to 6.366 g/cm3; the optimal temperature was 860°C. The best microwave dielectric properties [permittivity (? r ) = ~16, a quality factor (Q × f) = ~39,110 GHz and a temperature coefficient of resonant frequency (τ f ) = ~?59 ppm/°C] were obtained in the ceramic sintered at 860°C for 2 h. Then, TiO2 with a positive τ f (~+400 ppm/°C) was added to compensate the τ f value. The composite material was found to have a near-zero τ f (+2.7 ppm/°C) and desirable microwave properties (? r  = 19.9, Q × f = 24,885 GHz) when synthesized at a sintering temperature of 880°C. This system could potentially be used for low-temperature co-fired ceramics technology applications.  相似文献   

2.
Dielectric ceramics based on the solid solution (1 − x)Bi0.5Na0.5TiO3 (BNT)-xCaTiO3 (CT) were synthesized by the conventional solid-state route. BNT with various contents of CT formed a complete solid solution and exhibited a rhombohedral structure. CT in this solid solution with BNT was observed to decrease the dielectric constant at higher temperatures and raise the dielectric constant at lower temperatures. On the other hand, decreased ferroelectricity was observed with increasing CT concentration, resulting in a downward shift of the depolarization temperature and a decrease of the dissipation factor. With the addition of Mn2+ to 0.86BNT-0.14CT, the temperature characteristics of capacitance were improved (−55°C to 250°C, ΔC/C 25°C ≤ ±15%). By doping with 1.5 wt.% Mn2+, the dielectric constant at room temperature reached over 900, with a dielectric loss of less than 1%.  相似文献   

3.
The influence of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of ZnO-2TiO2-Nb2O5 (ZTN) ceramic has been investigated using dilatometry, x-ray diffraction, scanning electron microscopy, and microwave dielectric measurements. A small amount of BCB addition to ZTN can lower the sintering temperature from 1100°C to 900°C. The reduced sintering temperature was attributed to the formation of the BCB liquid phase. The ZTN ceramics containing 3.0 wt.% BCB sintered at 900°C for 2 h have good microwave dielectric properties of Q × f = 19,002 GHz (at 6.48 GHz), ε r = 45.8 and τ f  = 23.2 ppm/°C, which suggests that the ceramics can be applied in multilayer microwave devices, provided that Ag compatibility exists.  相似文献   

4.
Dielectric properties of a potassium sodium niobate (KNN) system in the microwave range up to GHz have rarely been studied. Since K0.5Na0.5NbO3 is the most common and typical type of KNN materials, non-doped K0.5Na0.5 NbO3 ceramics were synthesized at different temperatures (1080°C, 1090°C, 1100°C, and 1110°C) by a traditional solid reaction method for further characterization and analysis. The ceramics were in perovskite phase with orthorhombic symmetry. A small quantity of second phase was found in the 1110°C sintered specimen, which resulted from the volatilization of alkali oxides as the temperature increased. The complex permittivity was measured for the first time in the microwave range (8.2–12.4 GHz) and in the temperature range from 100°C to 220°C, and the effects of annealing on the dielectric properties were studied. The results indicate that the complex permittivity of KNN ceramics over the microwave range increases mainly due to high bulk density and the additional dielectric contributions of oxygen vacancies at high temperature.  相似文献   

5.
Impedance/admittance and dielectric spectroscopy were used to investigate the effect of temperature on the electrical response of liquid-phase sintered Zn2SnO4-SnO2 ceramics. The measurements were performed over a wide frequency range (100 Hz to 10 MHz) at different temperatures. The real and the imaginary part of the complex impedance traced semicircles in the complex plane. The resistance and the capacitance of bulk and grain-boundary regions were determined by modeling the experimental results using several equivalent circuits taking into account bulk deep trap states. Admittance complex diagrams were also determined in order to understand better the conduction mechanisms occurring in the polycrystalline Zn2SnO4-SnO2 system.  相似文献   

6.
Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz–1 MHz) and temperature (303–593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole–Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance (Z″) and the normalized imaginary part of modulus (M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.  相似文献   

7.
The effect of silver ions (2 mol %) on the dielectric properties and electrical conductivity of TlGaS2 single crystals grown by the Bridgman–Stockbarger method is investigated. The experimental results of studying the frequency dispersion of the dielectric coefficients of TlGaS2 single crystals (2 mol % Ag) makes it possible to establish the nature of dielectric losses and the charge-transfer mechanism, to evaluate the density of states near the Fermi level, the spread of states, the average hopping time and length, and the concentration of deep traps responsible for ac conductivity. The Ag doping of the TlGaS2 single crystals results in an increase in the density of states near the Fermi level and in a decrease in the average hopping time and length.  相似文献   

8.
(1???x)K0.5Na0.5NbO3-x(Bi0.5K0.5)ZrO3 [abbreviated as (1???x)KNN-xBKZ, 0?≤?x?≤?0.08] lead-free ceramics have been fabricated by a solid-state processing route. Based on the x-ray diffraction data and temperature-dependent dielectric characteristics, an orthorhombic phase for x?≤?0.03 and single rhombohedral one for x?≥?0.05 at room temperature were determined. The cell volume firstly increases, then decreases and finally increases with increasing BKZ, depending on ionic size and crystallographic structure. For the sample of x?=?0.05, a temperature-stable high permittivity (~?1736?±?15%) along with low dielectric loss tangent (≤?5%) is recorded from 158°C to 407°C. In addition, the activation energies of dielectric relaxation and dc conductivity at high temperatures were characterized by impedance spectroscopy. A combined effect of lattice distortion and oxygen vacancies on the magnitude of activation energies was discussed.  相似文献   

9.
Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the rutile structure, except for the x = 0.03 sample, which had a small amount of Zn2SbO4 as a secondary phase. We found that the power factor of the x = 0.03 sample was significantly improved due to the simultaneous increase in the electrical conductivity and the Seebeck coefficient. A power factor value of ∼2 × 10−4 W m−1 K−2 was obtained for the x = 0.03 sample at 1060 K, 126% higher than that for the undoped sample.  相似文献   

10.
ZnMn2O4 (ZMO) nanopowders have been synthesized by a hydrothermal method using different surfactants [cetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG)-400, and Polysorbate-80]. The as-prepared ZnMn2O4 samples exhibited single phase with tetragonal structure, showing honeycomb, spinel microsphere, and flower-cluster morphology, respectively. Cyclic voltammetry curves for all samples presented rectangular shape with symmetric nature and good cycling properties, with no obvious redox peak. Galvanostatic charge–discharge curves were triangular and symmetric. The specific capacitance of the ZnMn2O4 nanopowders gradually decreased with increase of the scanning rate. ZMO-PEG exhibited higher specific capacitance of 191 F g?1 at scan rate of 5 mV s?1 and retained superior large-current cycling stability of 98.4% after 1000 cycles compared with ZMO-CTAB (93.8%) or ZMO-Polysorbate-80 (97.7%). Electrochemical impedance spectroscopy revealed that the ZnMn2O4 nanopowders had low resistance. These results suggest that ZnMn2O4 nanopowders have good capacitance characteristics.  相似文献   

11.
Single-phase polycrystalline La x Sr1−x TiO3 (x = 0, 0.04, 0.06, 0.08, and 0.12) ceramics were prepared by the conventional solid-state reaction method using high-activity hydroxides as the raw materials. The electrical conductivity of all the samples increased with increasing x value and decreased with measurement temperature, while the thermal conductivity decreased with increasing x value and measurement temperature. The La0.12Sr0.88TiO3 sample showed the lowest thermal conductivity of 2.45 W m−1 K−1 at 873 K and the largest ZT of 0.28 at 773 K. The present work revealed that hydroxides with high activity as raw materials are beneficial to improve the thermoelectric properties, especially to decrease the thermal conductivity.  相似文献   

12.
Li2Mg2TiO5, a rock-salt structured ceramic fabricated by a solid-state sintering technique, was characterized at the microwave frequency band. As a result, a microwave dielectric permittivity (εr) of 13.4, a quality factor of 95,000 GHz (at 11.3 GHz), and a temperature coefficient of resonance frequency (τf) of ? 32.5 ppm/°C have been obtained at 1320°C. Li2Mg2TiO5 ceramics have low permittivity, a broad processing temperature region, and a low loss, making them potential applications in millimeter-wave devices. Furthermore, B2O3 addition efficiently lowered the sintering temperature of Li2Mg2TiO5 to 900°C, which opens up their possible applications in low-temperature co-fired ceramics (LTCC) technology.  相似文献   

13.
Silver antimonate (AgSbO3) is a potential high-temperature thermoelectric oxide with a low thermal conductivity, but it is difficult to fabricate dense bulk material with high phase purity. Well-dispersed AgSbO3 nanopowder with an average diameter of 50 nm was synthesized by an ion-exchange process in this study, the sintering density of which was apparently enhanced. Nearly single-phase AgSbO3 ceramic samples with a relative density close to 90% were obtained when sintered at a relatively low temperature (1273 K). The electrical conductivity of AgSbO3 increased greatly with increasing sintering temperature, probably because of defects originating from the compositional deviation caused by sintering, in addition to increased density. This study also confirmed that AgSbO3 had a low thermal conductivity, from 1.1 W m−1 K−1 at room temperature to 0.8 W m−1 K−1 at 673 K.  相似文献   

14.
Sintered Bi0.5(Na0.8K0.2)0.5TiO3 + x wt.% ZnO nanoparticle (BNKT–xZnOn) ceramics have been fabricated by conventional annealing with the aid of ultrasound waves for preliminary milling. Because of the presence of the liquid Bi2O3–ZnO phase at the eutectic point of 738°C, the sintering temperature decreased from 1150°C to 1000°C, and the morphology phase boundary of BNKT–xZnOn ceramics can be clarified by two separated peaks at (002)T and (200)T of 2θ in the x-ray diffraction (XRD) patterns. The improvement of ferroelectric properties has been obtained for BNZT–0.2 wt.% ZnOn ceramics by the increase of remanent polarization up to 20.4 μC/cm2 and a decrease of electric coercive field down to 14.2 kV/cm. The piezoelectric parameters of the ceramic included a piezoelectric charge constant of d 31 = 78 pC/N; electromechanical coupling factors k p = 0.31 and k t = 0.34, larger than the values of 42 pC/N, 0.12 and 0.13, respectively, were obtained for the BNKT ceramics.  相似文献   

15.
Well-crystallized Ca9ZnLi(PO4)7 ceramics were prepared by reactive pressureless sintering at atmospheric pressure. The single-phase Ca9ZnLi(PO4)7 ceramics were confirmed by x-ray diffraction (XRD). The dielectric and electrical properties were investigated over a wide frequency range (1 Hz to 1 MHz) by complex impedance spectroscopy at different temperatures between 25°C and 600°C. A dielectric anomaly was observed at 440°C, which might be related to the phase transition. The impedance Cole–Cole plot was used to analyze the results of complex impedance measurements, revealing that the electrical properties depend strongly on frequency and temperature. Two relaxation dispersions of the electrical parameters were found and analyzed in terms of bulk and grain-boundary ionic transfer processes. The slope of the alternating-current (AC) conductivity over a wide range of temperatures provides activation energies from 0.48 eV to 1.69 eV. These results suggest that the conduction process is of the mixed type.  相似文献   

16.
Polycrystalline In2O3 ceramics co-doped with Zn and Nd were prepared by the spark plasma sintering (SPS) process, and microstructure and thermoelectric (TE) transport properties of the ceramics were investigated. Our results indicate that co-doping with Zn2+ and Nd3+ shows a remarkable effect on the transport properties of In2O3-based ceramics. Large electrical conductivity (~130 S cm−1) and thermopower (~220 μV K−1) can be observed in these In2O3-based ceramic samples. The maximum power factor (PF) reaches 5.3 × 10−4 W m−1 K−2 at 973 K in the In1.92Nd0.04Zn0.04O3 sample, with a highest ZT of ~0.25.  相似文献   

17.
The effect of hydrogen on the fracture properties of lead-free ferroelectric ceramics has been studied. For hydrogen precharged samples, the fracture toughness decreased linearly with both increasing hydrogen concentration and the logarithm of dwell time of indenting. Hydrogen-induced delayed propagation of unloaded indentation cracks can occur, and the threshold stress intensity factor of hydrogen-induced cracking induced by residual stress decreases linearly with increasing hydrogen concentration.  相似文献   

18.
Dense samples of the higher boride YB22C2N have been fabricated through the spark plasma sintering (SPS) method with different sintering aids. YB22C2N is a representative of a series of newly discovered rare-earth borocarbonitrides, which may be the long-awaited n-type counterpart of boron carbide, “B4C.” The effect of Si, SiC, Al, and TiC additions on the sintering process of YB22C2N has been studied. The best sintered bodies with densities higher than 90% of theoretical density were obtained by means of SPS at 1700°C. We show that the additive choice and pressure have an effect on grain size and density. An investigation of the effect of atmosphere on the sintering behavior has also been carried out. It was found that sinterability is enhanced under nitrogen atmosphere. Thermoelectric properties of the materials sintered with additives have been evaluated, and we discuss their dependences on the fabrication process route.  相似文献   

19.
The Seebeck coefficient, electrical resistivity, and thermal conductivity of Zr3Mn4Si6 and TiMnSi2 were studied. The crystal lattices of these compounds contain relatively large open spaces, and, therefore, they have fairly low thermal conductivities (8.26 Wm−1 K−1 and 6.63 Wm−1 K−1, respectively) at room temperature. Their dimensionless figures of merit ZT were found to be 1.92 × 10−3 (at 1200 K) and 2.76 × 10−3 (at 900 K), respectively. The good electrical conductivities and low Seebeck coefficients might possibly be due to the fact that the distance between silicon atoms in these compounds is shorter than that in pure semiconductive silicon.  相似文献   

20.
Glass with compositions xK2O-(30 ? x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300–800 nm. From the absorption edge studies, the values of the optical band gap (E opt) and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号