首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
SiO_2改性环氧树脂灌封材料   总被引:1,自引:0,他引:1  
本文以SiO2作为增强材料,制备了SiO2/环氧树脂灌封材料,研究了不同的SiO2含量和热处理工艺条件对灌封材料性能的影响。实验发现,SiO2的加入对环氧树脂灌封材料的拉伸强度和体积电阻率有显著影响,SiO2含量为3%时环氧树脂灌封材料的拉伸强度达到最大值,并且其体积电阻率亦达到最大值;随着固化温度的提高,SiO2/环氧树脂灌封材料的体积电阻率不断减小,力学性能则先升后降,在固化温度为150℃时其力学性能最好。实验结果表明:SiO2含量为3%,固化温度为150℃时,SiO2/环氧树脂灌封材料的综合性能最好,其拉伸强度为1.6MPa,弹性模量为0.44GPa,体积电阻率为3.26×1013(Ω·cm)。  相似文献   

2.
采用原位聚合法制备了环氧树脂/纳米SiO2灌封材料.用透射电镜(TEM)、扫描电镜(SEM)、差热扫描量热法(DSC)等方法研究了材料的结构与性能.结果表明,环氧树脂/纳米SiO2灌封材料的冲击强度和弯曲强度随纳米SiO2含量而变化,当其含量为3%(质量分数)时二者出现最大值,与纯环氧树脂固化物相比冲击强度和弯曲强度分别提高了98%和112%.同时纳米SiO2的加入也使灌封材料的电性能和热性能得到改善,线膨胀系数明显降低,环氧树脂的粘度稍有增加.  相似文献   

3.
简述了环氧树脂胶粘剂几种典型的增韧改性机理,包括橡胶类增韧剂增韧机理、塑性树脂形成半互穿网络结构增韧机理、改变交联网络的化学结构增韧机理以及控制分子链交联网络状态的不均匀性来改进环氧树脂增韧机理等,介绍了以上机理在液晶环氧树脂、氰酸酯树脂改性环氧树脂以及纳米离子改性环氧树脂中的具体应用,提出了环氧树脂的应用发展方向主要体现在低粘度化和提高耐热性、降低吸水率2个方面,最后简要说明了环氧树脂胶粘剂的使用注意事项.  相似文献   

4.
纳米SiO2/环氧树脂复合材料性能研究   总被引:3,自引:0,他引:3  
采用溶液共混法制备了纳米SiO2/环氧树脂复合材料。通过冲击强度测试、SEM分析、DSC测试以及红外光谱分析、对材料的冲击性能耐热性能及其固化行为进行了探讨。实验结果表明,不同类型的纳米SiO2/环氧树脂复合材料其冲击性能都比纯环氧树脂固化物要好,并且都在纳米SiO2含量为4%时为最佳;纳米SiO2的加入也能有效提高材料的玻璃化转变温度;而且纳米SiO2的比表面积越大,其冲击性能和耐热性能越好。  相似文献   

5.
纳米SiO2/环氧树脂复合材料性能研究   总被引:21,自引:0,他引:21  
以纳米SiO2作为增强材料,制备纳米复合材料,研究了不同的纳米SiO2含量对纳米复合材料性能的影响,采用透射电镜对纳米SiO2粒子的分布进行了表征,采用正电子湮没技术(PALS)测试了自由体积的尺寸及浓度。结果表明,当纳米粒子SiO2含量为3%时,自由体积浓度最小,纳米复合材料的性能最佳。  相似文献   

6.
用端羧基丁腈橡胶(CTBN)与环氧树脂AG-80反应制得改性环氧树脂(Ⅰ);以硅硼树脂与双酚A型环氧树脂反应得到改性环氧树脂(Ⅱ);将改性环氧树脂(Ⅰ)和(Ⅱ)按比例在室温下充分混匀为A组分,把固化剂、阻燃剂等混配成B组分,将A和B组分按不同配比均匀混合配成灌封材料,并以IR、拉力机等仪器分别对改性树脂、灌封材料进行结构及力学性能的测试表征.筛选出的最佳固化条件为,当A组分与B组分用量为25:1时,于80~100℃固化2~4h,可得到理想的灌封效果.  相似文献   

7.
纳米SiO2增韧改性环氧树脂的研究   总被引:5,自引:1,他引:4  
通过高剪切分散和催化剂的催化相结合的方法,使纳米SiO2粒子与环氧树脂发生化学键接,制得纳米SiO2改性环氧树脂.利用拉伸测试、扫描电子显微镜(SEM)、显微红外分析等手段对改性环氧树脂的性能和结构进行了研究.结果表明,纳米SiO2的化学改性在环氧树脂中引入了Si-O-C键,较大地提高了环氧树脂的拉伸强度、断裂伸长率,使环氧树脂柔韧性增强,且耐蚀性也有所提高.  相似文献   

8.
采用纳米SiO2对低分子液态环氧树脂进行改性,讨论了纳米SiO2与环氧树脂间偶联形成的环氧树脂-偶联剂-纳米SiO2的层间结构.实验指出,当环氧树脂与纳米SiO2比例为100∶3(质量比)时,其综合物理机械性能达到最大值.  相似文献   

9.
玻璃纤维填充聚氨酯改性环氧树脂灌封材料的性能   总被引:1,自引:0,他引:1  
采用真空灌注工艺,以磨碎玻璃纤维(MG)为填料,通过聚氨酯(PU)对4,5环氧环己烷1,2-二甲酸二缩水甘油酯(TDE-85)、四氢邻苯二甲酸二缩水甘油酯(711)、二酚基丙烷环氧树脂(E-51)改性,研究了MG/PU/TDE-85灌封材料、MG/PU/711灌封材料及MG/PU/E-51灌封材料的力学性能、热性能和电性能。研究结果表明,MG/PU/TDE-85灌封材料的拉伸强度、冲击强度、玻璃化转变温度、体积电阻率均为最大,分别达到79.72MPa、17.83kJ/m2、144℃和2.78×1015Ω.cm,具有最佳的综合性能。  相似文献   

10.
以磨碎玻璃纤维(MG)为填料,分别采用甲基四氢邻苯二甲酸酐(MeTHPA)、甲基纳迪克酸酐(MNA)为固化剂,通过聚氨酯(PU)对4,5环氧环己烷1,2-二甲酸二缩水甘油酯(TDE-85)改性,研究了MG/PU/TDE-85/MeTHPA和MG/PU/TDE-85/MNA两种灌封材料的力学性能、热性能和电性能。研究结果表明,两种灌封材料都具有很高的力学性能、热性能和电性能。与MG/PU/TDE-85/MNA灌封材料相比,MG/PUTDE-85/MeTHPA灌封材料的拉伸强度、半寿温度、体积电阻较高,而冲击强度、玻璃化转变温度略低。  相似文献   

11.
环氧灌封材料的研究进展   总被引:2,自引:0,他引:2  
环氧树脂作为当前应用最广泛的灌封材料之一,具有优异的介电绝缘性能、热学性能和粘接性能,成型工艺简单,粘度低,优良的耐化学、湿、腐蚀性能,低固化收缩率等优点.针对环氧树脂脆性大的缺点,综述了环氧灌封材料的几种增韧方法,主要包括橡胶、核-壳结构聚合物、热塑性树脂、液晶聚合物和无机刚性粒子增韧,并介绍了环氧灌封材料的应用研究进展,最后展望了环氧灌封材料的发展趋势和前景.  相似文献   

12.
用溶胶-凝胶法制备环氧树脂/纳米SiO2复合材料,研究了在脱除溶剂以及反应副产物过程中温度、表面改性剂对纳米SiO2粒子的分散性、固化后样品力学性能的影响.研究表明:纳米SiO2的引入对环氧树脂的力学性能有一定的提高;随着体系溶剂脱除温度的升高纳米粒子的团聚明显;加入表面改性剂能够阻止纳米粒子的团聚,硅烷偶联剂KH550比表面活性PEG剂能够更好地阻止纳米粒子的团聚;但是表面活性剂PEG的加入会使纳米复合材料的力学性能有一定程度的下降.  相似文献   

13.
用溶胶-凝胶法制备环氧树脂/纳米SiO2复合材料,研究了在脱除溶剂以及反应副产物过程中温度、表面改性剂对纳米SiO2粒子的分散性、固化后样品力学性能的影响。研究表明:纳米SiO2的引入对环氧树脂的力学性能有一定的提高;随着体系溶剂脱除温度的升高纳米粒子的团聚明显;加入表面改性剂能够阻止纳米粒子的团聚,硅烷偶联剂KH550比表面活性PEG剂能够更好地阻止纳米粒子的团聚;但是表面活性剂PEG的加入会使纳米复合材料的力学性能有一定程度的下降。  相似文献   

14.
纳米SiO2/环氧树脂的制备与表征   总被引:14,自引:0,他引:14  
利用偶联剂处理后的纳米SiO2粒子改性环氧树脂制备纳米SiO2/环氧树脂复合材料.IR分析表明:纳米SiO2与环氧树脂形成了复合体;热失重、冲击强度、扫描电子显微镜和体积电阻率测试表明:纳米SiO2和普通SiO2对环氧树脂有明显的改性作用,当SiO2/环氧树脂为4/100时,复合体的热解温度、冲击强度和体积电阻率均达到最大值,纳米SiO2/环氧树脂的热解温度、冲击强度和体积电阻率分别为323℃,89.2kJ·m-2和3.56×1014Ω·cm-2;普通SiO2/环氧树脂的热解温度、冲击强度和体积电阻率分别为308℃,17.13kJ·m-2和2.80×1014Ω·cm-2.  相似文献   

15.
采用甲基丙烯酸缩水甘油酯对Al2O3颗粒进行接枝改性,制备了接枝微粒,考察了PGMA/Al2O3对环氧电子灌封材料力学性能的影响,并利用扫描电镜观察了环氧灌封材料经PGMA/Al2O3填充前后的冲击断面的形貌变化。研究结果表明,经接枝改性后,接枝微粒PGMA/Al2O3对环氧灌封材料的力学性能起到了明显的改善作用:PGMA/Al2O3对环氧灌封料的增韧效果明显优于未改性的Al2O3,且随PGMA/Al2O3填充量的增大,冲击韧性先增大后减小,在填充量较小(0.7%)时,冲击韧性最大;屈服强度也随PGMA/Al2O3的加入出现一最佳值;并随接枝微粒PGMA/Al2O3的接枝率的增加,其冲击韧性和屈服强度明显增大。  相似文献   

16.
纳米SiO2改性可生物降解材料研究进展   总被引:5,自引:4,他引:1  
纳米SiO2无毒,无味,无污染,具有优异的纳米特性,与高分子聚合物具有良好的相容性,被广泛应用于改善可生物降解材料性能等领域。综述了纳米SiO2的分散稳定性能,以及纳米SiO2改性聚乳酸、聚乙烯醇等合成型生物降解材料与淀粉、纤维素、壳聚糖、蛋白质、木质素等天然高分子材料的研究进展,并从降低价格及增强性能方面,对其改性可生物降解材料替代某些通用塑料的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号