共查询到14条相似文献,搜索用时 93 毫秒
1.
在工程实际当中,时变时滞和不确定的存在往往使得系统的性能变差甚至不稳定。针对一类含混合变时滞的不确定中立系统,研究了时滞相关鲁棒稳定性问题。在考虑不确定性为泛数有界的条件下,首先通过构造包含三重积分项的Lyapunov-Krasovskii(L-K)的泛函,其次利用新的积分不等式更紧的界定条件,引入相关项自由权矩阵的方法,处理泛函沿系统的导数产生的交叉项,建立了基于线性矩阵不等式(LMI)形式的鲁棒稳定新判据。该方法不涉及复杂的模型变换,减小了理论推导和计算上的复杂性,所提出判据与离散时滞和中立时滞均相关,且扩大了系统稳定所允许的最大时滞上界范围,具有更低的保守性。仿真算例表明所提出的稳定性判据是有效的。 相似文献
2.
研究一类含混合变时滞不确定中立系统时滞相关鲁棒稳定性问题。基于时滞中点值,把时滞区间均分成两部分,通过构造包含时滞中点信息的增广泛函和三重积分项的Lyapunov-Krasovskii (L-K)泛函,利用L-K稳定性定理、积分不等式方法和自由权矩阵技术,建立了一种基于线性矩阵不等式(LMI)的、与离散时滞和中立时滞均相关的鲁棒稳定性判据。数值算例表明,该判据改善了已有文献的结论,具有更低的保守性。 相似文献
3.
中立型变时滞系统的鲁棒稳定性 总被引:1,自引:0,他引:1
考虑不确定中立型变时滞系统的鲁棒稳定性问题. 首先, 引入新的变量来代替系统的不确定性; 然后, 通过构造一般形式的Lyapunov-Krasovskii泛函、使用积分不等式并引入自由矩阵, 得到了基于线性矩阵不等式的系统稳定性判据. 该结论与中立型时滞, 离散时滞及其导数均相关, 具有较小的保守性. 最后, 通过仿真算例说明了所得到的结论在保守性上优于现存的结果以及中立型时滞, 离散时滞及其导数三者之间的关系. 相似文献
4.
5.
含区间时变时滞的线性不确定系统鲁棒稳定性新判据 总被引:2,自引:0,他引:2
研究一类区间时变时滞线性不确定系统的鲁棒稳定性问题.通过引入增广Lyapunov泛函,结合积分不等式方法,导出了区间时变时滞线性系统的时滞相关鲁棒稳定性新判据.与现有方法不同,该方法不涉及自由权矩阵技术和任何模型变换,减少了理论和计算上的复杂性,而且在估计Lyapunov泛函导数的上界时没有忽略某些有用项.数值算例表明,所提出的判据是有效的,具有更低的保守性. 相似文献
6.
7.
8.
一类具有非线性扰动的多重时滞不确定系统鲁棒预测控制 总被引:1,自引:0,他引:1
针对一类具有非线性扰动且同时存在多重状态和输入时滞的不确定系统, 提出 一种鲁棒预测控制器设计方法. 基于预测控制滚动优化原理, 运用Lyapunov稳定性 理论和线性矩阵不等式 (Linear matrix inequalities, LMIs)方法, 首先近似求解无限时域二次性能指标优化问题, 然后优化非 线性扰动项所应满足的最大上界, 定量地研究鲁棒预测控制在范数有界意义下的扰动抑制 问题, 并给出了鲁棒预测控制器存在的充分条件. 最后通过仿真验证了所提方法的有效性. 相似文献
9.
针对一类不确定中立型时变时滞Hopfield神经网络的鲁棒稳定性问题, 构造了一个新Lyapunov-Krasovskii泛函, 并结合自由矩阵方法和牛顿—莱布尼茨公式, 得到了新的时滞相关稳定性判据. 该判据考虑了中立型时变时滞Hopfield神经网络中的参数不确定性, 所得结果以线性矩阵不等式(Linear matrix inequality, LMI)的形式给出, 容易验证. 最后, 通过两个数值算例验证了该结果的有效性及可行性. 该判据对丰富与完善中立型神经网络的稳定性理论体系, 具有积极的意义. 相似文献
10.
11.
12.
In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples. 相似文献
13.
Jian-Min Jiao 《国际自动化与计算杂志》2013,10(1):39-45
The problem of stability for singular systems with two additive time-varying delay components is investigated. By constructing a simple type of Lyapunov-Krasovskii functional and utilizing free matrix variables in approximating certain integral quadratic terms, a delay-dependent stability criterion is established for the considered systems to be regular, impulse free, and stable in terms of linear matrix inequalities (LMIs). Based on this criterion, some new stability conditions for singular systems with a single delay in a range and regular systems with two additive time-varying delay components are proposed. These developed results have advantages over some previous ones in that they have fewer matrix variables yet less conservatism. Finally, two numerical examples are employed to illustrate the effectiveness of the obtained theoretical results. 相似文献
14.
Improved delay-range-dependent stability criteria for linear systems with time-varying delays 总被引:2,自引:0,他引:2
This paper is concerned with the stability analysis of linear systems with time-varying delays in a given range. A new type of augmented Lyapunov functional is proposed which contains some triple-integral terms. In the proposed Lyapunov functional, the information on the lower bound of the delay is fully exploited. Some new stability criteria are derived in terms of linear matrix inequalities without introducing any free-weighting matrices. Numerical examples are given to illustrate the effectiveness of the proposed method. 相似文献