首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intake of fish and omega-3 (n-3) fatty acids is associated with a reduced concentration of plasma triacylglycerols (TAG) but the mechanisms are not fully clarified. Stearoyl-CoA desaturase-1 (SCD1) activity, governing TAG synthesis, is affected by n-3 fatty acids. Peripheral blood mononuclear cells (PBMC) display expression of genes involved in lipid metabolism. The aim of the present study was to estimate whether intake of lean and fatty fish would influence n-3 fatty acids composition in plasma phospholipids (PL), serum TAG, 18:1n-9/18:0 ratio in plasma PL, as well as PBMC gene expression of SCD1 and fatty acid synthase (FAS). Healthy males and females (n = 30), aged 20–40, consumed either 150 g of cod, salmon, or potato (control) daily for 15 days. During intervention docosahexaenoic acid (DHA, 22:6n-3) increased in the cod group (P < 0.05), while TAG concentration decreased (P < 0.05). In the salmon group both eicosapentaenoic acid (EPA, 20:5n-3) and DHA increased (P < 0.05) whereas TAG concentration and the 18:1n-9/18:0 ratio decreased (P < 0.05). Reduction of the 18:1n-9/18:0 ratio was associated with a corresponding lowering of TAG (P < 0.05) and an increase in EPA and DHA (P < 0.05). The mRNA levels of SCD1 and FAS in PBMC were not significantly altered after intake of cod or salmon when compared with the control group. In conclusion, both lean and fatty fish may lower TAG, possibly by reducing the 18:1n-9/18:0 ratio related to allosteric inhibition of SCD1 activity, rather than by influencing the synthesis of enzyme protein.  相似文献   

2.
The aim of the study was to investigate the effect of n-3 PUFA enrichment in longissimus muscle on intramuscular fat (IMF) content and expression of related genes in growing-finishing barrows. Two isoenergetic, isonitrogenous and isolipidic diets were formulated: one was basal diet and the other contained 10% linseed. Twenty-four Landrace × NewDamLine barrows weighing 35 ± 3.7 kg were randomly assigned to four treatment groups with six pigs per group. During the whole experimental period of 90 days, all groups were first fed the basal diet and then the linseed diet for 0, 30, 60, and 90 days before slaughter, respectively. Meat quality, fatty acid composition, and expression of genes involved in adipogenesis in longissimus muscle were measured and analyzed. The IMF content increased linearly (P < 0.05) as the linseed diet feeding time prolonged. Meanwhile, n-3 PUFA content and expression of peroxisome proliferator-activated receptor δ (PPARδ), PPARγ, adipocyte fatty acid–binding protein (aP2) and lipoprotein lipase (LPL) increased linearly (P < 0.01) as well, while the expression of wingless related MMTV integration site 10b (Wnt10b) linearly decreased (P < 0.01). Furthermore, significant (P < 0.01) quadratic or linear relation was observed between n-3 PUFA enrichment and expression of these genes, while significant (P < 0.01) quadratic or linear relation was observed between the expression of PPARγ, aP2 or Wnt10b and IMF content. These data show that enhancing n-3 PUFA enrichment in muscle leads to significant increase in IMF content. A possible explanation is due to alterations in the expression of genes involved in adipogenesis, however this will need to be confirmed by protein and enzyme activity studies.  相似文献   

3.
4.
Fish are a rich source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two long-chain polyunsaturated n-3 fatty acids (LC n-3 PUFA) with cardiovascular benefits. A related but less-investigated LC n-3 PUFA, docosapentaenoic acid (DPA), is more common in seal oil and pasture-fed red meats. This study compared indicators of platelet function and plasma lipids in healthy volunteers given supplements containing these different fatty acids (FA) for 14 days. Subjects, randomised into three groups of ten, consumed capsules of tuna oil (210 mg EPA, 30 mg DPA, 810 mg DHA), seal oil (340 mg EPA, 230 mg DPA, 450 mg DHA) or placebo (sunola) oil. Supplementary LC n-3 PUFA levels were approximately 1 g/day in both fish and seal oil groups. Baseline dietary FA and other nutrient intakes were similar in all groups. Both fish and seal oil elevated platelet DHA levels (P < 0.01). Seal oil also raised platelet DPA and EPA levels (P < 0.01), and decreased p-selectin (P = 0.01), a platelet activation marker negatively associated with DPA (P = 0.03) and EPA (P < 0.01) but not DHA. Plasma triacylglycerol decreased (P = 0.03) and HDL-cholesterol levels increased (P = 0.01) with seal oil only. Hence, seal oil may be more efficient than fish oil at promoting healthy plasma lipid profiles and lowering thrombotic risk, possibly due to its high DPA as well as EPA content.  相似文献   

5.
6.
Mateos HT  Lewandowski PA  Su XQ 《Lipids》2011,46(8):741-751
This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.  相似文献   

7.
Tan CY  Zhong RZ  Tan ZL  Han XF  Tang SX  Xiao WJ  Sun ZH  Wang M 《Lipids》2011,46(3):239-247
This study was conducted to examine dietary tea catechins (TC) supplementation on the fatty acid composition of muscle and ruminal bacteria in goats fed a maize stover-based diet. Forty goats, 8 months old (16.2 ± 1.2 kg), were randomly divided into four equal groups (10 animals in each group) and assigned to four experiment diets with TC supplementation at four levels (0, 2,000, 3,000 and 4,000 mg TC/kg feed, namely TC0, TC2000, TC3000 and TC4000, respectively). After a 60-day feeding period, all the goats were slaughtered and sampled. The results showed that dietary TC inclusion increased the average daily gain (ADG), protein content in the semimembranosus muscle and dry matter in the longissimus dorsi muscle (LD). Dietary TC supplementation increased the ratio of n-6 to n-3 fatty acid, the ratio of polyunsaturated fatty acids to saturated fatty acids was higher in TC3000 and TC4000 than in TC0 and TC2000 for LD. The current results implied that dietary inclusion of a suitable TC dose could improve the growth performance and increase the proportions of unsaturated fatty acids in muscle, and the biohydrogenation of ruminal microorganisms might change the profiles of fatty acids in the muscle of growing goats.  相似文献   

8.
Effect of ALA-Enriched Food Supply on Cardiovascular Risk Factors in Males   总被引:2,自引:1,他引:1  
The outcome of a total dietary approach using a wide range of n-3 polyunsaturated fatty acids (PUFA) enriched food items on cardiovascular diseases called for further investigation. The study objective was to assess the effect of an ALA-enriched food supply on cardiovascular risk factors in healthy males. A dietary intervention (single-blind field trial with pre- and post-measurements) was performed with 59 healthy males in a Belgian prison. Over a period of 12 weeks they were supplied with an n-3 enriched diet (containing 6.5 g n-3 PUFA/day compared to 4 g n-3 PUFA/day in the standard diet) that was substituted for their regular diet, increasing mainly the α-linolenic acid intake (from 2.8 to around 5 g/day). The results indicated no impact on subjects waist circumference, weight and BMI or systolic blood pressure. In contrast, the diastolic blood pressure significantly decreased during the intervention period (from 74.6 ± 8.2 to 71.7 ± 10.1 mmHg; P < 0.02). Moreover, the HDL-cholesterol level increased in non-smoking participants (from 0.97 ± 0.25 to 1.06 ± 0.23 mmol/l; P < 0.03). In summary, the study demonstrated that enrichment of commonly eaten food items with n-3 fatty acids provides the opportunity to increase the n-3 fatty acid intake and to decrease the n-6/n-3 ratio which results in a decreasing diastolic blood pressure and an increase of HDL-cholesterol (in non-smokers). An erratum to this article can be found at  相似文献   

9.
To elucidate if the trans-membrane uptake of fatty acids is protein-mediated, the uptake of oleic acid (18:1n-9), linoleic acid (18:2n-6), alpha-linolenic acid (18:3n-3), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) was investigated in vitro in Atlantic salmon (Salmo salar L.) primary hepatocytes. Firstly, optimal fatty acid incubation time and concentration were established for trans-membrane 18:n-9 uptake. Based on saturation kinetics, a 2-h incubation time and 37.5 μM were used for the following experiments. Secondly, in order to identify whether trans-membrane fatty acid uptake in hepatocytes was mainly passive or protein mediated, hepatocytes were pre-incubated with membrane protein inhibitors followed by 2 h of incubation with [1-14C] labelled 18:1n-9, 18:2n-6, 18:3n-3, 20:5n-3 and 22:6n-3. Fatty acid uptake into hepatocytes was highest with 20:5n-3 and 22:6n-3 and lowest with 18:1n-9. Phloretin was the most potent fatty acid uptake inhibitor, inhibiting uptake in the following order: 20:5n-3 > 18:3n-3 = 22:6n-3 > 18:2n-6 > 18:1n-9. The uptake of FA in Atlantic salmon hepatocytes seem to be due to both saturable and inhibitable protein mediated uptake, as well as passive uptake processes with more unsaturated and long fatty acids (20:n-3 > 22:6n-3 = 18:3n-3 > 18:2n-6) being more dependent on membrane protein mediated uptake compared to 18:1n-9.  相似文献   

10.
The aim of this study was to determine the effect and mechanism of tamoxifen (TAM)-induced steatosis in vitro. HepG 2 (Human hepatocellular liver carcinoma cell line) cells were treated with different concentrations of TAM for 72 h. Steatosis of hepatocytes was determined after Oil Red O staining and measurement of triglyceride (TG) concentration. The expressions of genes in the TG homeostasis pathway, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD), carnitine palmitoyltransferase 1 (CPT1) and microsomal triglyceride transfer protein (MTP), were examined using quantitative real-time PCR and Western blot analysis. Cell proliferation was examined using the cell counting kit-8 (CCK-8) assay. We found that hepatocytes treated with TAM had: (1) induced hepatocyte steatosis and increased hepatocyte TG; (2) upregulation of SREBP-1c, FAS, ACC, SCD and MTP mRNA expressions (300%, 600%, 70%, 130% and 160%, respectively); (3) corresponding upregulation of protein expression; and (4) no difference in HepG 2 cell proliferation. Our results suggest that TAM can induce hepatocyte steatosis in vitro and that the enhancement of fatty acid synthesis through the upregulations of SREBP-1c and its downstream target genes (FAS, ACC and SCD) may be the key mechanism of TAM-induced hepatocyte steatosis.  相似文献   

11.
Sun X  Zemel MB 《Lipids》2007,42(4):297-305
Dietary calcium modulation of adiposity is mediated, in part, by suppression of calcitriol, while the additional effect of dairy products is mediated by additional components; these include the high concentration of leucine, a key factor in the regulation of muscle protein turnover. We investigated the effect of leucine, calcitriol and calcium on energy metabolism in murine adipocytes and muscle cells and on energy partitioning between adipocytes and skeletal muscle. Leucine induced a marked increase in fatty acid oxidation in C2C12 muscle cells (P < 0.001) and decreased FAS expression by 66% (P < 0.001) in 3T3-L1 adipocytes. Calcitriol decreased muscle cell fatty acid oxidation by 37% (P < 0.001) and increased adipocyte FAS gene expression by threefold (P < 0.05); these effects were partially reversed by either leucine or calcium channel antagonism with nifedipine. Co-culture of muscle cells with adipocytes or incubation with 48-h adipocyte conditioned medium decreased muscle fatty acid oxidation by 62% (P < 0.001), but treating adipocytes with leucine and/or nifedipine attenuated this effect. Leucine, nifedipine and calcitriol also modulated adiponectin production and thereby exerted additional indirect effects on fatty acid oxidation in C2C12 myotubes. Adiponectin increased IL-15 and IL-6 release by myotubes and partially reversed the inhibitory effects of calcitriol. Comparable effects of leucine, calcitriol and adiponectin were found in myotubes treated with conditioned medium derived from adipocytes or co-cultured with adipocytes. These data suggest that leucine and nifedipine promote energy partitioning from adipocytes to muscle cells, resulting in decreased energy storage in adipocytes and increasing fatty acid utilization in muscle.  相似文献   

12.
In vitro cultivated Atlantic salmon (Salmo salar L.), hepatocytes were incubated without or with a mixture of sesamin and episesamin in order to test for possible effects on lipid metabolism. Sesamin/episesamin exposure (0.05 mM, final concentration) led to increased elongation and desaturation of 14C 18:3n-3 to docosahexaenoic acid (14C 22:6n-3, DHA, P < 0.01) and down regulated gene expression of Δ6 and Δ5 desaturases compared to control treatment. Sesamin/episesamin further increased the hepatocytes capacity for fatty acid β-oxidation of 14C 18:3n-3 (P < 0.01) to the 14C acid soluble products, acetate, malate and oxaloacetate, in agreement with an increased gene expression of carnitine palmitoyltransferase I. Also the gene expression of cluster of differentiation 36 was upregulated and the expression of scavenger receptor type B, peroxisome proliferator-activated receptors α and γ were downregulated. The amount of triacylglycerols secreted by the cells tended to be lower in the sesamin/episesamin incubated hepatocytes than the control cells. This study shows that sesamin has favourable effects on lipid metabolism leading to increased level of DHA, which may be of interest for aquaculture use.  相似文献   

13.
Mislabeling of farmed and wild salmon sold in markets has been reported. Since the fatty acid content of fish may influence human health and thus consumer behavior, a simplified method to identify wild and farmed salmon is necessary. Several studies have demonstrated differences in lipid profiles between farmed and wild salmon but no data exists validating these differences with government-approved methods to accurately identify the origin of these fish. Current methods are both expensive and complicated, using highly specialized equipment not commonly available. Therefore, we developed a testing protocol using gas chromatography (GC), to determine the origin of salmon using fatty acid profiles. We also compared the GC method with the currently approved FDA (United States Food and Drug Administration) technique that uses analysis of carotenoid optical isomers and found 100% agreement. Statistical validation (n = 30) was obtained showing elevated 18:2n-6 (z = 4.56; P = 0.0001) and decreased 20:1n-9 (z = 1.79; P = 0.07) in farmed samples. The method is suitable for wide adaptation because fatty acid methyl ester analysis is a well-established procedure in labs that conduct analysis of lipid composition and food constituents. GC analysis for determining the origin of North American salmon compared favorably with the astaxanthin isomer technique used by the FDA and showed that the fatty acid 18:2n-6 was the key indicator associated with the origin of these salmon.  相似文献   

14.
We hypothesized that exogenous fatty acids, and especially or 18:2 trans-10, cis-12 conjugated linoleic acid (CLA), would decrease adipogenic and lipogenic gene expression and de novo fatty acid biosynthesis in intramuscular (i.m.) and subcutaneous (s.c.) adipose tissues. Fresh i.m. and s.c. adipose tissues were collected from the longissimus thoracis muscle of Angus steers at 12, 14, and 16 months of age (n = 4 per time point). Adipose tissue explants were incubated in duplicate for 48 h with 40 μM α-linolenic (ALA), oleic, stearic, trans-vaccenic, or CLA. Adipocyte size, acetate and glucose incorporation into fatty acids in vitro and mRNA levels for C/EBPβ, CPT1β, GPR43, PPARγ, PRKAA1 (AMPKα) and SCD1 were measured following the incubations. PRKAA1 and SCD1gene expression were greater (P < 0.001) in s.c. adipose tissue than in i.m. adipose tissue and acetate incorporation into lipids and C/EBPβ, PPARγ, and SCD1gene expression were greater at 16 months of age than at 12 months of age in i.m. adipose (P < 0.01). C/EBPβ gene expression increased by 16 months of age and PRKAA1 gene expression decreased by 16 months of age in s.c. adipose tissue. All fatty acids increased s.c. adipocyte volumes whereas CLA decreased acetate incorporation into lipids in s.c. adipose tissue (P < 0.05), but none of the fatty acids affected gene expression in i.m. or s.c. adipose tissue (P > 0.10). Thus, CLA depressed de novo fatty acid biosynthesis from acetate but neither CLA nor other fatty acids significantly affected adipogenic or lipogenic gene expression.  相似文献   

15.
16.
Lipid accumulation in the human liver seems to be a crucial mechanism in the pathogenesis and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate gene expression of different fatty acid (FA) metabolism-related genes in morbidly obese (MO) women with NAFLD. Liver expression of key genes related to de novo FA synthesis (LXRα, SREBP1c, ACC1, FAS), FA uptake and transport (PPARγ, CD36, FABP4), FA oxidation (PPARα), and inflammation (IL6, TNFα, CRP, PPARδ) were assessed by RT-qPCR in 127 MO women with normal liver histology (NL, n = 13), simple steatosis (SS, n = 47) and non-alcoholic steatohepatitis (NASH, n = 67). Liver FAS mRNA expression was significantly higher in MO NAFLD women with both SS and NASH compared to those with NL (p = 0.003, p = 0.010, respectively). Hepatic IL6 and TNFα mRNA expression was higher in NASH than in SS subjects (p = 0.033, p = 0.050, respectively). Interestingly, LXRα, ACC1 and FAS expression had an inverse relation with the grade of steatosis. These results were confirmed by western blot analysis. In conclusion, our results indicate that lipogenesis seems to be downregulated in advanced stages of SS, suggesting that, in this type of extreme obesity, the deregulation of the lipogenic pathway might be associated with the severity of steatosis.  相似文献   

17.
Yang ZH  Miyahara H  Takemura S  Hatanaka A 《Lipids》2011,46(5):425-434
We investigated the effect of saury oil on the alleviation of metabolic syndrome in mice. Saury oil contains 18% (w/w/) n-3 polyunsaturated fatty acids (n-3 PUFA) and 35% (w/w) monounsaturated fatty acids (MUFA). Diabetic KKAy mice were fed a 10% soybean oil diet (control) or a 10% saury oil diet for 4 weeks, and diet-induced obese C57BL/6J mice were fed a high-fat diet containing 32% lard (control) or 22% lard plus 10% saury oil for 6 weeks. After the intervention periods, the levels of glucose, insulin and lipids in plasma had decreased significantly for the saury oil diet group, and insulin sensitivity had improved. These favorable changes may be attributed to the increased adiponectin and decreased TNFα and resistin levels in plasma. The saury oil diet also resulted in downregulated expression of the lipogenic genes (SREBP-1, SCD-1, FAS, and ACC) as well as upregulation of the fatty acid oxidative gene, CPT-1, and the energy expenditure-related genes (PGC1α and PGC1β) in white adipose tissue for the diet-induced obese C57BL/6J mice. An increase in n-3 PUFA levels and the concomitant decrease in the n-6/n-3 PUFA level ratio in serum, white adipose tissue, and liver with a saury oil diet are likely to be involved in the beneficial changes to the metabolic indicators. MUFA may also play a positive role in remodeling lipid composition. Based on these mice models, our results suggest a potential use for saury oil for improving metabolic abnormalities.  相似文献   

18.
19.
Camelina sativa is an oilseed plant rich in n-3 and n-6 fatty acids and extruding the seeds results in high protein meal (~40%) containing high levels of n-3 fatty acids. In this study, we examined the effects of feeding extruded defatted camelina meal to commercial laying hens, measuring egg production, quality, and fatty acid composition. Lohmann White Leghorn hens (29 weeks old) were randomly allocated to three dietary treatment groups (n = 25 per group) and data was collected over a 12 week production period. All the treatment groups were fed a corn soy based experimental diet containing 0% (control), 5, or 10% extruded camelina meal. We found no significant differences in percent hen-day egg production and feed consumed per dozen eggs. Egg shell strength was significantly higher in both camelina groups compared to the controls. Egg total n-3 fatty acid content increased 1.9- and 2.7-fold in 5 and 10% camelina groups respectively relative to the control. A similar increase in DHA content also occurred. Further camelina meal did not alter glucosinolate levels and no detectable glucosinolates or metabolic product isothiocyanates were found in the eggs from either the 5 or 10% camelina groups. These results indicate that camelina meal is a viable dietary source of n-3 fatty acids for poultry and its dietary inclusion results in eggs enriched with n-3 fatty acids.  相似文献   

20.
The n-6/n-3 fatty acid (FA) ratio has increased in the Western-style diet to ~10–15:1 during the last century, which may have contributed to the rise in cardiovascular disease (CVD). Prior studies have evaluated the effects on CVD risk factors of manipulating the levels of n-6 and n-3 FA using food and supplements or investigated the metabolic fate of linoleic acid (LNA) and α-linolenic acid (ALA) by varying the n-6/n-3 ratios. However, no previous studies have investigated the potential interaction between diet ratios and supplementation with eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). We used a factorial design approach with adults (n = 24) in a controlled feeding trial to compare the accretion of EPA and DHA into red blood cell membranes (RBC) by adding a direct source (algal oil supplement) of EPA and DHA in a diet with a 10:1 versus 2:1 ratio of n-6/n-3 FA. Subjects were randomized into 8-week crossover diet sequences and each subject consumed three of four diets [10:1, 10:1 plus supplement (10:1 + S), 2:1 and 2:1 + S]. LNA and ALA intakes were 9.4 and 7.7%, and 1.0 and 3.0% during the low and high ALA diets, respectively. Compared to the Western-style 10:1 diet, the 2:1 diet increased EPA by 60% (P < 0.0001) in RBC membranes without the direct EPA source and a 34% increase (P = 0.027) was observed with the 10:1 + S diet; however, DHA levels increased in both diet ratios only with a direct DHA source. Shifting towards a 2:1 diet is a valid alternative to taking EPA-containing supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号