首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dietary monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid+MUFA/saturated fatty acid (PUFA+MUFA/SFA) ratio on plasma and liver lipid concentrations were studied. In experiment I, when rats were fed with 40% fat (energy%, PUFA/SFA ratio 1.0) and 1% (w/w) cholesterol (C) diets for 21 d, a large amount of MUFA (28.1 energy%, PUFA+MUFA/SFA=5.7) in the diet was found to increase the plasma total C, triacylglycerol (TAG), and phospholipid (PL) as compared with the low-MUFA diet (7.0 energy%, PUFA+MUFA/SFA=1.4). The plasma very low density lipoprotein (VLDL)-C, VLDL-TAG, VLDL-PL, and low density lipoprotein (LDL)-C increased significantly in the high-MUFA diet group, but high density lipoprotein (HDL)-C did not change significantly. The high-MUFA diet resulted in greater accumulation of liver C but lesser accumulation of TAG. In experiment II, when dietary SFA was fixed at a certain level (13.2 energy%; PUFA+MUFA/SFA=2.0), rats given a larger amount of MUFA (23.1 energy%; PUFA/MUFA=0.2; MUFA/SFA=1.8) showed higher plasma and liver C levels than did the low-MUFA diet (7.7 energy%; PUFA/MUFA=2.5; MUFA/SFA=0.6). When PUFA was fixed at a certain level (24.4 energy%), there was not a significant difference in the plasma C level between the high-and low-MUFA dietary groups (PUFA+MUFA/SFA=4.8 and 8.4), but the higher PUFA+MUFA/SFA diet, which was high in MUFA/SFA ratio, significantly decreased the plasma HDL-C and TAG levels. However, when MUFA content was fixed at a certain level (16.4 energy%), no significant difference was observed between the two groups with different PUFA/SFA ratios of 0.2 and 4.1, but liver C level was raised in the higher PUFA/SFA diet. It appears that the PUFA/SFA ratio alone is unsuitable to predict the change of plasma C level, because a large amount of dietary MUFA may lead to an increase of plasma and liver lipids in rats. It seems that the prerequisites for keeping low plasma and liver C are (i) low MUFA/SFA ratio, (ii) high PUFA/MUFA ratio, and (iii) PUFA+MUFA/SFA ratio not to exceed 2.  相似文献   

2.
The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11‐ and t10,c12‐CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11‐ and t10,c12‐CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11‐CLA was indicated by our results, as both fatty acids were incorporated into all the analyzed tissues when a diet containing VA but not c9,t11‐CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the OA group. Thus, CLA increased n‐3 polyunsaturated fatty acids (PUFA) in PL from kidney and spleen and lowered the ratio of n‐6/n‐3 PUFA in these tissues. Furthermore, CLA increased C22 PUFA in the PL fraction of kidney, spleen and liver, but reduced the level of arachidonic acid in PL of liver and spleen and lowered the Δ9‐desaturation indexes in all analyzed tissue TAG.  相似文献   

3.
High‐fat diets (HFD) are commonly used in rodents to induce obesity, increase serum fatty acids and induce lipotoxicity in various organs. Invitro studies commonly utilize individual free fatty acids (FFA) to study lipid exposure in an effort to model what is occurring in vivo; however, these approaches are not physiological as tissues are exposed to multiple fatty acids in vivo. Here we characterize circulating lipids in obesity‐prone rats fed an HFD in both fasted and fed states with the goal of developing physiologically relevant fatty acid mixtures for subsequent in vitro studies. Rats were fed an HFD (60 % kcal fat) or a control diet (10 % kcal fat) for 3 weeks; liver tissue and both portal and systemic blood were collected. Fatty acid profiles and absolute concentrations of triglycerides (TAG) and FFA in the serum and TAG, diacylglycerol (DAG) and phospholipids in the liver were measured. Surprisingly, both systemic and portal serum TAG were ~40 % lower in HFD‐fed compared to controls. Overall, compared to the control diet, HFD feeding consistently induced an increase in the proportion of circulating polyunsaturated fatty acids (PUFA) with a concomitant decline in monounsaturated fatty acids (MUFA) and saturated fatty acids (SFA) in both serum TAG and FFA. The elevations of PUFA were mostly attributed to increases in n‐6 PUFA, linoleic acid and arachidonic acid. In conclusion, fatty acid mixtures enriched with linoleic and arachidonic acid in addition to SFA and MUFA should be utilized for in vitro studies attempting to model lipid exposures that occur during in vivo HFD conditions.  相似文献   

4.
Kelley DS  Erickson KL 《Lipids》2003,38(4):377-386
We have reviewed the published literature regarding the effects of CLA on body composition and immune cell functions in humans and in animal models. Results from studies in mice, hamsters, rats, and pigs generally support the notion that CLA reduced depot fat in the normal or lean strains. However, in obese rats, it increased body fat or decreased it less than in the corresponding lean controls. These studies also indicate that t10,c12-CLA was the isomer that reduced adipose fat; however, it also increased the fat content of several other tissues and increased circulating insulin and the saturated FA content of adipose tissue and muscle. Four of the eight published human studies found small but significant reductions in body fat with CLA supplementation; however, the reductions were smaller than the prediction errors for the methods used. The other four human studies found no change in body fat with CLA supplementation. These studies also report that CLA supplementation increased the risk factors for diabetes and cardiovascular disease including increased blood glucose, insulin, insulin resistance, VLDL, C-reactive protein, lipid peroxidation, and decreased HDL. Most studies regarding the effects of CLA on immune cell functions have been conducted with a mixture of isomers, and the results have been variable. One study conducted in mice with the purified c9,t11-CLA and t10,c12-CLA isomers indicated that the two isomers have similar effects on immune cell functions. Some of the reasons for the discrepancies between the effects of CLA in published reports are discussed. Although significant benefit to humans from CLA supplementation is questionable, it may create several health risks in both humans and animals. On the basis of the published data, CLA supplementation of adult human diets to improve body composition or enhance immune functions cannot be recommended at this time.  相似文献   

5.
Protein depletion is associated with hepatic steatosis and decreased circulating triacylglycerol (TAG). Since conjugated linoleic acid (CLA) increases lean body mass, protects against muscle catabolism, and modulates lipid metabolism, the aim of this work was to investigate the effects of CLA with two different amounts of dietary fat on the regulation of plasma and hepatic TAG concentration, and its possible connections with changes in fatty acid (FA) profile in plasma, liver and adipose tissue and hepatic oxidative status during protein repletion. Rats were fed a low protein diet (14 days) and then a protein repletion diet (30 days), supplemented or not with CLA, containing 7% (w/w) or 20% (w/w) of fat. Hepatic TAG secretion and removal by muscle and adipose tissue lipoprotein lipase, FA profile and liver oxidative status were evaluated. Protein depletion affected hepatic TAG secretion and peripheral removal, decreasing plasma and increasing liver TAG concentration, whereas protein repletion with CLA improved these abnormalities independently of the amount of dietary fat by increasing hepatic TAG secretion. This prevention in the absence of CLA was not observed. CLA was incorporated in plasma and tissues (adipose > liver > plasma, and c9,t11-CLA > t10,c12-CLA), accompanied by alterations in FA composition, mainly in adipose tissue. The hepatic oxidative stress was overcome by protein repletion. CLA had a beneficial impact on TAG metabolism in protein repleted animals, preventing hepatic steatosis through higher hepatic TAG secretion.  相似文献   

6.
Park Y  Albright KJ  Storkson JM  Liu W  Cook ME  Pariza MW 《Lipids》1999,34(3):243-248
Two experiments were conducted. In Experiment 1, 8-wk-old mice were fed control diet or diet supplemented with 0.5% conjugated linoleic acid (CLA) to study the effect of CLA on body composition (CLA: 40.8–41.1% c-9,t-11 isomer, 43.5–44.9% t-10,c-12 isomer). The data for CLA-fed mice vs. controls described parallel but significantly distinct responses for both absolute and relative changes in body fat mass (reduced in CLA-fed mice) and for relative changes in whole body protein and whole body water (both of which were increased in CLA-fed mice). In the CLA-fed mice, the effect on whole body protein appeared to precede the reduction in body fat mass. In Experiment 2, weanling mice were fed control diet or diet supplemented with 0.5% CLA for 4 wk (test group), at which time all mice were fed control diet devoid of added CLA. The test group exhibited significantly reduced body fat and significantly enhanced whole body water relative to controls at the time of diet change. Time trends for changes in relative body composition were described by parallel lines where the test group exhibited significantly less body fat but significantly more whole body protein, whole body water, and whole body ash than controls. Tissue CLA levels declined following the withdrawal of CLA from the diet. In skeletal muscle of mice fed CLA-supplemented diet, the t-10,c-12 isomer was cleared significantly faster than the c-9,t-11 CLA isomer.  相似文献   

7.
The total lipids of the longissimus dorsi muscle were analyzed from commercial adult Sarda sheep in Sardina taken from local abattoirs, and in the subsequent year from three local farms in the Sassari region that provided some information on the amount and type of supplements fed to the pasture-fed sheep. The complete lipid analysis of sheep meat included the fatty acids from O-acyl and N-acyl lipids, including the trans- and conjugated linoleic acid (CLA) isomers and the alk-1-enyl ethers from the plasmalogenic lipids. This analysis required the use of a combination of acid- and base-catalyzed methylation procedures, the former to quantitate the O-acyl, N-acyl and alkenyl ethers, and the latter to determine the content of CLA isomers and their metabolites. A combination of gas chromatographic and silver-ion separation techniques was necessary to quantitate all of the meat lipid constituents, which included a prior separation of the trans-octadecenoic acids (18:1) and a separation of fatty acid methyl esters and the dimethylacetals (DMAs) from the acyl and alk-1-enyl ethers, respectively. The alk-1-enyl moieties of the DMAs were analyzed as their stable cyclic acetals. In general, about half of the meat lipids were triacylglycerols, even though excess fat was trimmed from the meat. The higher fat content in the meat appears to be related to the older age of these animals. The variation in the trans-18:1 and CLA isomer profiles of the Sarda sheep obtained from the abattoirs was much greater than in the profiles from the sheep from the three selected farms. Higher levels of 10t-18:1, 7t9c-18:2, 9t11c-18:2 and 10t12c-18:2 were observed in the commercial sheep meat, which reflected the poorer quality diets of these sheep compared to those from the three farms, which consistently showed higher levels of 11t-18:1, 9c11t-18:2 and 11t13c-18:2. In the second study, sheep were provided with supplements during the spring and summer grazing season, which contributed to higher levels of 11t-18:1 and 9c11t-18:2. The farm that provided a small amount of supplements during the spring had the better lipid profile at both time periods. The polyunsaturated fatty acid (PUFA) content was higher in the meat from Sarda sheep from the three farms than in the meat from those sheep obtained from commercial slaughter operations. The plasmalogenic lipid content ranged from 2 to 3% of total lipids, the alk-1-enyl ethers consisted mainly of saturated and monounsaturated moieties, and the trans-18:1 profile was similar to that of the FA. The n-6 (6–8%) and n-3 PUFA (2–3%) contents, the n-6/n-3 ratio (3:1), as well as the saturated fatty acid (SFA) content (42–45%) and the SFA to PUFA ratio (4:1 to 5:1) of the Sarda sheep from the three farms were comparable to sheep meat lipids found in similar commercial operations in Europe. Inclusion of small amounts of supplements for the grazing Sarda sheep resulted in improved quality of sheep meat lipids.  相似文献   

8.
The objective of this study was to demonstrate that changing the fatty acid composition of bovine adipose tissue concurrently changed (i) proportions of triacylglycerol species, (ii) fatty acid composition of triacylglycerol species, and (iii) positional distribution of the component fatty acids of the triacylglycerol species. To achieve this, we took advantage of adipose tissue lipids, from cattle fed in Australia and Japan, that varied widely in fatty acid composition and melting points. Treatment groups produced in Australia were cattle fed: a cornbased diet (MUFA1); a grain-based diet containing whole cottonseed (SFA); a grain-based diet containing protected cottonseed oil (PUFA); and a grain-based diet that resulted in high contents of trans fatty acids (TFA). Treatment groups produced in Japan (MUFA2 and MUFA3) were diets of unknown composition fed for over 300 d. The MUFA1, MUFA2, and MUFA3 samples all were rich in monounsaturated fatty acids, varying only in the proportions of the individual monounsaturates. The SFA, PUFA, and TFA samples had relatively high concentrations of stearic acid (18:0), PUFA, and TFA, respectively. Slip points (indicative of melting points) were 45.1, 41.5, 38.5, 30.7, 28.4, and 22.8°C, for the SFA, TFA, PUFA, MUFA1, MUFA2, and MUFA3 groups, respectively (P<0.05). Triacylglycerols were separated by high-performance liquid chromatography on a silver nitrate-impregnated column into sn-1,2,3-saturated fatty acid triacylglycerol (SSS); [triacylglycerols containing two saturated acids and one trans-monounsaturated fatty acid (SSMt sn-positions unknown)]; sn-1-saturated, 2-monounsaturated, 3-saturated triacylglycerol (SMS); sn-1-saturated, 2-monounsaturated, 3-trans-monounsaturated triacylglycerol (SMMt); sn-1-saturated, 2,3-monounsaturated fatty acid triacylglycerol (SMM); sn-1-saturated, 2-polyunsaturated, 3-trans-monounsaturated triacylglycerol; sn-1,2,3-monounsaturated fatty acid triacylglycerol (MMM); and sn-1-saturated, 2-polyunsaturated, 3-monounsaturated triacylglycerol. Fatty acid methyl esters of each triacylglycerol species also were determined, and further analysis indicated sn-2, and sn-1/3 positions. As the percentage oleic acid increased in the total lipid extract, the proportions of SMM and MMM increased (e.g., from 31.4 and 2.4% in the SFA group to 55.4 and 17.8% in the MUFA3 group). The elevated 18:0 in the SFA group (26%) was reflected in increased percentages of SSS and SSM, and caused an increase in the proportion of 18:0 in all triacylglycerol species relative to the other treatment groups. The percentage of 18:0 in the sn-1/3 positions was elevated markedly in the SMS fraction of the SFA group (to 44%); this would account for the high melting point of the fat of these animals. We conclude that long-term feeding of cattle is sufficient to produce significant alterations in fatty acid composition in bovine adipose tissue. Alterations in the fatty acid composition of bovine adipose tissue changed both the distribution and the composition of the triacylglycerol species, which, in turn, accounted for marked differences in melting points among treatment groups.  相似文献   

9.
Bioavailability of dietary β-carotene (BC) is dependent on dose, quantity, dispersion, and presence of fat in the diet. Fats are comprised of a variety of fatty acids, which may impact the bioavailability of carotenoids. However, there is a gap in research on whether specific fatty acid classes affect serum BC concentrations in population samples. The primary objective of this study was to assess the association between reported fat and fatty acid intake and serum BC concentrations utilizing data from the National Health and Nutrition Examination Surveys (NHANES) 2003–2006. Data from 3278 NHANES participants 20–85 years old were analyzed to estimate the relationships between serum BC concentrations and reported saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid intakes. Multiple linear regression estimated ln(serum BC) based on reported fatty acid intakes adjusted for age, sex, race/ethnicity, and reported dietary BC intakes. Mean and standard error (SE) for serum BC concentrations were 14.31 ± 0.05 μg/dl. Means and SE for total fat, SFA, MUFA, and PUFA were 85.7 ± 1.3, 26.9 ± 0.4, 31.1 ± 0.5, and 17.8 ± 0.4 g, respectively. There was a significant trend for association between serum BC and reported total fat intakes (r = −0.002, p < 0.0001), but the association was not strong. Multiple linear regression showed positive associations between serum BC concentrations and higher reported dietary PUFA consumption. PUFA alpha-linolenic acid intakes are positively associated with serum BC concentrations, while MUFA palmitoleic acid and SFA stearic acid were inversely associated with serum BC. The inverse association between MUFA and SFA suggests there may be multiple post-digestion factors affecting serum carotenoid concentrations.  相似文献   

10.
The study was carried out to investigate the changes in saturated (SFA), monoene (MUFA), trans (TFA), and polyunsaturated (PUFA) fatty acids and the key fatty acid ratios (SFA/UFA, cis PUFA/SFA, C18:2/C16:0 and C18:3/C16:0) during potato chips frying in canola oil using single bounce attenuated total reflectance FTIR (SB‐ATR‐FTIR) spectroscopy. The data obtained from GC‐FID were used as reference. The calibration of main fat groups and their key fatty acid ratios were developed by partial least square (PLS) regression coefficients using 4000 to 650 cm?1 spectral range. FTIR PLS regression for the predicted SFA, MUFA, TFA, and PUFA were found 0.999, 0.998, 0.998, and 0.999, respectively, whereas for SFA/UFA, cis PUFA/SFA, C18:2/C16:0 and C18:3/C16:0 the regression coefficients were 0.991, 0.997, 0.996, and 0.994, respectively. We conclude that FTIR‐PLS could be used for rapid and accurate assessment of changes in the main fat groups and their key fatty acid ratios ratio during the frying process. Practical applications: FTIR‐ATR method is very simple, rapid, and environmentally friendly. No sample preparation is required and one drop of oil is enough for FTIR analysis. The proposed method could be applied for quick determination of key fatty acid ratios in the food processing industry.  相似文献   

11.
Declarations of the total content of trans fatty acids (FA) and saturated FA (SFA) are mandatory on food labels in the US and Canada. Gas chromatography (GC) has been the method of choice for the determination of FA composition. However, GC is time consuming and requires conversion of fats and oils to their FA methyl esters. In the present study, a recently published Fourier transform near-infrared (FT-NIR) spectroscopic procedure was applied to the rapid (<5 min) determination of total SFA, monounsaturated FA (MUFA), polyunsaturated FA (PUFA), and trans FA contents of 30 commercially available edible fats and oils. Good agreement was obtained between the GC and FT-NIR methods for the determination of total SFA, MUFA, and PUFA contents. Differences between the two methods were apparent for the determination of trans fat at trans fat levels <2 % of total fat. The analytical determinations of total SFA, MUFA, and PUFA contents for many of the oils examined differed from the respective values declared on the product labels. Our findings demonstrate that the FT-NIR procedure serves as a suitable alternative method for the rapid determination of total SFA, MUFA, PUFA and trans FA contents of neat vegetable oils.  相似文献   

12.
The fatty acid composition of the diet has various effects on atherosclerosis risk factors. Dietary saturated fatty acids (SFA) and trans‐unsaturated fatty acids increase the low‐density lipoprotein (LDL)‐/high‐density lipoprotein (HDL)‐cholesterol ratio in serum, while these fats do not have a significant bearing on serum triglyceride levels. By contrast, dietary monounsaturated fatty acids (MUFA), n‐6 polyunsaturated fatty acids (PUFA), and α‐linolenic acid (C18:3n‐3) similarly reduce LDL cholesterol concentrations, while their influence on serum HDL cholesterol and triglycerides is not appreciable. Dietary long‐chain n‐3 PUFA slightly increase serum LDL cholesterol concentrations, but are nevertheless considered salubrious with regard to serum lipids due to the distinct triglyceride‐lowering effects. MUFA‐rich compared to n‐6 PUFA‐rich diets strongly reduce the in vitro oxidizability of LDL. The available studies on this subject also suggest that n‐3 PUFA in the small amounts usually present in the diet are not unduly harmful. These findings are consistent with reports from observational studies: the amount of SFA is positively and the amount of MUFA and n‐6 PUFA in the diet is inversely associated with the risk of cardiovascular disease in most epidemiological studies. The available studies have had an impact on current dietary guidelines, which unanimously recommend that most of the dietary fat should be in the form of MUFA, while the amount of SFA and trans fatty acids in the diet should be as low as possible.  相似文献   

13.
In this study, the effects of temperature on the fatty acids profile and the effects of temperature on the degree of unsaturation of fatty acids of Oreochromis niloticus were investigated. The analysis was performed by gas chromatography. The study showed that there were large temperature variations (10.0–32.0°C) during the study period (January–December). The highest crude fat content was found in January (3380 mg/100 g) and the lowest in June (2050 mg/100 g). The fatty acids profile showed significantly different diversity (p < 0.05). Total saturated fatty acid (∑SFA) content ranged from 409.54 to 1297.61 mg/100 g, monounsaturated fatty acid (∑MUFA) from 207.68 to 665.81 mg/100 g, and polyunsaturated fatty acid (∑PUFA) from 175.12 to 972.23 mg/100 g. The ∑MUFA and ∑PUFA concentrations were highest in January and lowest in June, and the ∑SFA concentration was lowest in January and highest in June. EPA and DHA contents were highest in January (198.96 mg/100 g) and lowest in June (48.76 mg/100 g). The contents of omega-3 (653.17 mg/100 g) and omega-6 fatty acids (252.54 mg/100 g) were highest in January and lowest in June (ω-3; 106.43 and ω-6; 60.91 mg/100 g). It concluded that the degree of unsaturation of fatty acids increases with decreasing temperature. In this study, the nutritional quality of the FAs profile was assessed using lipid quality indices. The indices indicating dietary quality of lipids by their values: Atherogenic index (0.47), thrombogenic index (0.38), hypocholesterolemic to hypercholesterolemic (3.00), meat fat quality (6.78), ω6/ω3 ratio (0.39), PUFA/SFA (2.37), MUFA/SFA (1.62), PUFA/MUFA (1.46), and PUFA + MUFA/SFA (3.99). These values are within the recommended range, indicating that the lipid profile of O. niloticus has high nutritional quality, which can be further improved by harvesting the fish during the winter season. Due to the nutritional importance of O. niloticus, the culture of this species could have significant interest to the people of Karachi, especially the coastal communities. To promote the nutritional diet in local population, the government should support the aquaculture of Nile tilapia.  相似文献   

14.
Moon JH  Lee JY  Kang SB  Park JS  Lee BW  Kang ES  Ahn CW  Lee HC  Cha BS 《Lipids》2010,45(12):1109-1116
Saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) show different effects on the development of insulin resistance. In this study, we compared the effect of dietary SFA and MUFA on the insulin signaling pathway in the skeletal muscle of a type 2 diabetic animal model. Twenty-nine-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) rats were randomly divided into three groups and fed one of the following diets for 3 weeks; a normal chow diet, an SFA (lard oil) enriched or a MUFA (olive oil) enriched high-fat diet. The vastus lateralis muscle was used for analyses. Insulin tolerance test showed improved insulin sensitivity in rats fed the MUFA diet, as compared to those fed the SFA diet (p < 0.001). The SFA diet reduced IRS-1 expression and phosphorylated PI3K levels in skeletal muscle, as compared with a chow diet (p < 0.001, respectively). On the contrary, muscle IRS-2 expression and phosphorylated ERK1/2 was significantly increased in rats fed the SFA diet (p < 0.001, respectively). Membrane translocation of glucose transporter type 4 decreased in the skeletal muscle of rats fed the SFA diet, as compared to those fed a chow diet (p < 0.001). These changes in insulin signaling pathway in skeletal muscle were not observed in rats fed the MUFA diet. In conclusion, the beneficial effect of dietary MUFA on insulin sensitivity is associated with a conserved IRS-1/PI3K insulin signaling pathway which was altered by dietary SFA.  相似文献   

15.
Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA‐rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10–12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA‐rich soybean oil produced by photoisomerization. Diets of 30‐week Leghorns, broilers, and jungle fowl were supplemented with 15 % CLA‐rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC‐FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55 % of total yolk CLA during CLA feeding. However, t‐10,c‐12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c‐9,t‐11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation.  相似文献   

16.
The current study was conducted to determine optimal levels of dietary saturated fatty acids (SFA), n‐3 PUFA and to study potential n‐3 sparing effect of dietary SFA for Malaysian mahseer Tor tambroides. Juvenile T. tambroides were fed four trial diets with similar basal composition but different oil mixtures in a 2 × 2 factorial experimental design for 10 weeks. The two factors were the levels of dietary SFA and the levels of dietary n‐3 PUFAs. Growth performance and fatty acid profile of tissues were analyzed at the end of the experiment. Significant differences in growth performance were observed among treatments, and fish fed the diet low in n‐3 and high in SFA showed the best growth performance. T. tambroides fed the high n‐3 diets showed a significantly higher (p<0.05) muscle total n‐3 PUFA content compared to fish fed the low n‐3 diets. The highest 22:6 n‐3 and total n‐3 PUFA content of the liver were also observed in fish fed the low n‐3 and high SFA diet. However, the significant interaction (p<0.05) between dietary SFA and n‐3 PUFA levels was observed for the total n‐3 PUFA content of both muscle and liver tissues, suggesting an n‐3 sparing action by dietary SFA. The results of this study suggest that 2.5% n‐3 PUFA in the diet of T. tambroides, with an SFA to n‐3 ratio of 15.3, is sufficient to provide the best growth performance and to retain the n‐3 content of tissues. Practical applications: The continuous increase of world population and growth of aquaculture industry put severe pressure on the marine resources such as fish oil and fishmeal. Here we show that fish oil can be substituted with palm oil, a cheaper and more available source of oil in tropical countries, in the diet of Malaysian mahseer without a reduction of growth. Moreover, palm oil as a source of SFA may spare omega‐3 in the fish tissues. Omega‐3 is an essential fatty acid for humans as final consumer of edible fish.  相似文献   

17.
The objective of this study was to determine the incorporation of conjugated linoleic acid (CLA) into triacylglycerols (TAG) and phospholipids (PL) of tissues and plasma, and to interpret the role of dietary‐derived vaccenic acid (VA) in increasing the tissue content of CLA (c9,t11) and the influence on the fatty acid profile. We fed five groups of rats semi‐purified diets with varying levels of CLA and VA: control butter with low CLA (c9,t11) and VA; control butter added 5% CLA (c9,t11); control butter added 5% Tonalin [equal amount of CLA (c9,t11) and CLA (t10,c12)]; control butter added 5% VA; butter with high CLA (c9,t11) and VA (H‐CLA), for 3 weeks. The highest incorporation of CLA (c9,t11) was found in adipose tissue, and the lowest was observed in liver. Low intake of CLA (c9,t11) combined with high intake of VA resulted in a higher incorporation of CLA (c9,t11) in tissues due to the conversion of VA to CLA (c9,t11), compared to feeding CLA (c9,t11) without VA. However, in enterocytes, the proportion of CLA (c9,t11) was low after feeding VA, indicating no or only a minor conversion of VA to CLA (c9,t11) in the intestine. The incorporation of CLA (t10,c12) into TAG from plasma and tissues was generally much lower than that of the CLA (c9,t11) isomer, except in the enterocyte TAG, which had similar proportions of the two isomers.  相似文献   

18.
The autoxidation processes of the cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) isomers of CLA were separately observed at ca. 0% RH and different temperatures. The t10,c12 CLA oxidized faster than the c9,t11 isomer at all tested temperatures. The first half of the oxidation process of t10,c12 CLA obeyed an autocatalytic-type rate expression, but the latter half followed first-order kinetics. On the other hand, the entire oxidation process of c9,t11 CLA could be expressed by the autocatalytic-type rate expression. The apparent activation energies and frequency factors for the autoxidation of the isomers were estimated from the rate constants obtained at various temperatures based on the Arrhenius equation. The apparent activation energies for the CLA isomers were greater than those for the nonconjugated n−6 and n−3 PUFA or their esters. However, the enthalpyentropy compensation held during the autoxidation of both the CLA and PUFA. This suggested that the autoxidation mechanisms for the CLA and PUFA were essentially the same.  相似文献   

19.
Oil (healthier lipid combination of olive, linseed and fish oils)‐in‐water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI) and microbial transglutaminase (MTG)) were used as pork backfat replacers in low‐fat frankfurters. Composition (proximate analysis and fatty acid profile), sensory analysis and technological (processing and purge losses, texture and colour) properties of frankfurters were analysed as affected by the type of oil‐in‐water emulsion and by chilling storage (2°C, 41 days). Frankfurters produced with oil combinations had lower levels of saturated fatty acids (SFA, 19.3%), similar levels of MUFA (46.9%) and higher levels of PUFA (33.6%) than control frankfurters (all pork fat) (39.3, 49.5 and 10.6%, respectively). PUFA/SFA and n‐6/n‐3 PUFA ratios in control sample were 0.27 and 9.27; in reformulated frankfurters the PUFA/SFA ratio was higher (1.7) and the n‐6/n‐3 PUFA ratio was lower (0.47). In general, frankfurters had good fat and water binding properties. Colour parameters were affected by formulation and storage time. Compared to control sample, frankfurters made with oil‐in‐water emulsions had higher (p<0.05) hardness, springiness and chewiness values. Emulsified oil stabilizing systems did not affect sensory characteristics of frankfurters, and all products were judged as acceptable.  相似文献   

20.
Conjugated linoleic acid (CLA) is a popular supplement believed to enhance immune function, body composition and insulin sensitivity, but results of scientific studies investigating its effects are conflicting. The isomer- and tissue-specific effects of CLA may explain these conflicting results. Therefore, this study quantified the incorporation of the c9t11 and t10c12 CLA isomers into adipose tissue and skeletal muscle in response to supplementation in healthy, regularly-exercising, non-obese persons. The CLA group (n = 14) ingested 3.9 g per day CLA (50:50 t9c11:c10t12) and the placebo group (n = 11) 3.9 g per day high-oleic-acid sunflower oil for 12 weeks. Following supplementation, the t10c12 isomer was incorporated into adipose tissue triacylglycerol (P < 0.001), and the c9t11 isomer tended to increase in skeletal muscle phospholipids (P = 0.056). Therefore, human adipose tissue and skeletal muscle are enriched with CLA in an isomer-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号