共查询到19条相似文献,搜索用时 62 毫秒
1.
孙德山 《计算机应用与软件》2008,25(2):84-85
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题。分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了。另外,有些适用于分类问题的快速优化算法岁不能用于回归算法中。研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据。 相似文献
2.
一种支持向量机的组合核函数 总被引:11,自引:0,他引:11
核函数是支持向量机的核心,不同的核函数将产生不同的分类效果,核函数也是支持向量机理论中比较难理解的一部分。通过引入核函数,支持向量机可以很容易地实现非线性算法。首先探讨了核函数的本质,说明了核函数与所映射空间之间的关系,进一步给出了核函数的构成定理和构成方法,说明了核函数分为局部核函数与全局核函数两大类,并指出了两者的区别和各自的优势。最后,提出了一个新的核函数——组合核函数,并将该核函数应用于支持向量机中,并进行了人脸识别实验,实验结果也验证了该核函数的有效性。 相似文献
3.
支持向量机表现的好坏很大程度上取决于核函数的选取,因此最近几年关于核函数的研究有许多。越来越多的核函数也被提了出来!但是选取合适的核函数往往却不容易,因为数据的特征往往不知道。文中利用函数的Taylor展开思想,提出了一种新的核函数,叫T—KMOD,基于KMOD提出的。该核函数的灵活性更好,可以处理很多分类的问题。用网络入侵的数据对该核函数进行了仿真,从仿真的结果可以看出,和一些常用的核函数相比,它的鲁棒性更好,有更强的分类能力。同时该函数的分类效果更好。所以该核函数和一般常用的核函数相比,可能更具有一般选择性。 相似文献
4.
一种支持向量机的混合核函数 总被引:2,自引:0,他引:2
核函数是支持向量机的核心,不同的核函数将产生不同的分类效果.由于普通核函数各有其利弊,为了得到学习能力和泛化能力较强的核函数,根据核函数的基本性质,两个核函数之和仍然是核函数,将局部核函数和全局核函数线性组合构成新的核函数--混合核函数.该核函数吸取了局部核函数和全局核函数的优点.利用混合核函数进行流程企业供应链预测实验,仿真结果验证了该核函数的有效性和正确性. 相似文献
5.
6.
首先,讨论了支持向量回归(support vector regression,SVR)的基本原理.然后,从信息几何的角度分析了核函数的几何结构,通过共形变换(conformal transformation)构建与数据依赖(data-dependent)的核函数,使得特征空间在支持向量附近的体积元缩小,以改善SVR的机器性能.实验结果表明了方法的有效性. 相似文献
7.
基于核函数的支持向量机分类方法 总被引:2,自引:0,他引:2
支持向量机是目前正在兴起的一种新的数据挖掘分类方法,阐述了支持向量机的理论基础及核函数,阐明了支持向量机分类的基本思想,分析了支持向量机的优缺点,对支持向量机在海量数据分类中的应用前景进行了展望。 相似文献
8.
9.
为克服维数灾难和过拟合等传统算法所不可规避的问题,利用支持向量机(Support Vector Machine,SVM)提出基于时序数据时间相关性的核函数修正选择方法,并以真实的二氧化硫(SO2)数据为实验数据验证该方法的有效性.实验结果表明采用时序核函数对测试数据集的拟合效果更好,并对模型泛化能力有一定的提高. 相似文献
10.
核函数支持向量机 总被引:3,自引:0,他引:3
杨钟瑾 《计算机工程与应用》2008,44(33):1-6
概述了基于核函数方法的支持向量机。首先简要叙述支持向量机的基本思想和核特征空间,然后重点介绍核函数支持向量机的前沿理论与领先技术,同时描述了核函数支持向量机在关键领域的应用。 相似文献
11.
支持向量机的中文文本分类研究 总被引:9,自引:0,他引:9
支持向量机是一种基于统计学习理论的新型机器学习方法,在文本分类领域取得了很好的效果。使用支持向量机进行了文本分类的研究,实现了一个中文文本自动分类系统,并给出了实验结果。 相似文献
12.
13.
高斯核支持向量机分类和模型参数选择研究 总被引:20,自引:4,他引:20
支持向量机(SupportVectorMachine,SVM)是近几年发展起来的机器学习新方法,以高斯核为核函数的支持向量机在实际应用中表现出良好的学习性能,被广泛应用于模式分类中。论文研究了高斯核支持向量机分类在IRIS分类问题上的应用,并结合结构风险最小化原则分析了误差惩罚参数C和高斯核宽度σ对SVM性能的影响,最后通过数值实验进一步分析了这种影响。 相似文献
14.
将小波理论和统计学习运用到网络入侵检测中,使用小波核支持向量机(WSVM)对网络连接信息进行攻击检测和异常发现。仿真试验结果表明,与RBF核相比,小波核支持向量机在泛化能力和检测能力方面都有所提高。 相似文献
15.
王睿 《计算机与数字工程》2013,(12):1900-1902
传统转导支持向量机有效地利用了未标记样本,具有较高的分类准确率,但是计算复杂度较高。针对该不足,论文提出了一种基于核聚类的启发式转导支持向量机学习算法。首先将未标记样本利用核聚类算法进行划分,然后对划分后的每一簇样本标记为同一类别,最后根据传统的转导支持向量机算法进行新样本集合上的分类学习。所提方法通过对核聚类后同一簇未标记样本赋予同样的类别,极大地降低了传统转导支持向量机算法的计算复杂度。在MNIST手写阿拉伯数字识别数据集上的实验表明,所提算法较好地保持了传统转导支持向量机分类精度高的优势。 相似文献
16.
基于核方法的Web挖掘研究 总被引:2,自引:0,他引:2
基于词空间的分类方法很难处理文本的高维特性和捕获文本语义概念.利用核主成分分析和支持向量机。提出一种通过约简文本数据维数抽取语义概念、基于语义概念进行文本分类的新方法.首先将文档映射到高维线性特征空间消除非线性特征,然后在映射空间中通过主成分分析消除变量之间的相关性,实现降维和语义概念抽取,得到文档的语义概念空间,最后在语义概念空间中采用支持向量机进行分类.通过新定义的核函数,不必显式实现到语义概念空间的映射,可在原始文档向量空间中直接实现基于语义概念的分类.利用核化的GHA方法自适应迭代求解核矩阵的特征向量和特征值,适于求解大规模的文本分类问题.试验结果表明该方法对于改进文本分类的性能具有较好的效果. 相似文献
17.
基于乘性规则的支持向量域分类器 总被引:18,自引:0,他引:18
该文提出了一种基于支持向量域描述(SVDD)的学习分类器.在两类样本分类中,该算法在训练时通过对1类样本的描述求取包含1类样本的球形边界.然后通过该边界对两类样本数据进行分类,并且在求取边界的优化问题中,采用乘性规则来直接求取Lagrange乘子,而不是用传统的二次优化方法.该文所获得的学习算法和支持向量机(SVM)与序列最小优化(SMO)算法相比,不仅降低了样本的采集代价,而且在优化速度上有了很大提高.通过CBCL人脸库的仿真实验.将该算法和SVM、SOM算法的实验结果进行对比,说明了该学习算法的有效性. 相似文献
18.
近年来,在机器学习的各个领域出现了越来越多不定的度量核矩阵,使得不定核支持向量机(IKSVM)得到了广泛关注。但是,现有IKSVM算法通常不能较好地解决高维数据所带来的信息冗余和样本稀疏等问题。针对此研究现状,对现有主流的IKSVM算法进行了研究,并基于再生核Kre?n空间(RKKS)中对IKSVM问题的稳定化定义,从理论上证明了IKSVM问题的本质为不定核主成分分析(IKPCA)降维后空间中的支持向量机(SVM)问题,进一步地提出求解IKSVM问题的新型学习框架TP-IKSVM。TP-IKSVM通过将IKSVM问题的求解拆分为IKPCA和SVM两个阶段,充分地发挥了IKPCA在处理高维数据的信息冗余和样本稀疏等方面的优势,同时结合SVM以有效分类。在真实数据集上的实验结果表明,TP-IKSVM的分类精度优于现有主流的IKSVM算法。 相似文献
19.
不同种类支持向量机算法的比较研究 总被引:3,自引:0,他引:3
谢承旺 《小型微型计算机系统》2008,29(1):106-109
介绍一种新型的机器学习方法-支持向量机.论述了不同种类支持向量机算法并指出了每种算法的优劣.实验结果显示了核函数中选择合适的参数对分类器的效果是很重要的,通过实验还重点比较了Chunking、SMO和SVMlight三种典型分解算法,并分析了训练速度优劣的原因.文章最后给出了今后SVM研究方向的一些预见. 相似文献