首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用单边切口梁法研究了二维碳纤维增强碳化硼–碳化硅复合材料(2D C/(SiC–BxC)n)在空气和真空两种环境下断裂韧性与温度的关系,用扫描电镜观察断口微观形貌。结果表明:真空中2D C/(SiC–BxC)n复合材料的断裂韧性随温度升高而降低,室温下界面结合弱,残余热应力大,易发生纤维桥接裂纹,断裂韧性高;高温下相反。在空气中随温度升高断裂韧性增加,700℃达到最大值,尔后随温度升高而降低,这与生成的B2O3和SiO2.B2O3固溶体会封填裂纹以及碳相的氧化有关。  相似文献   

2.
采用双槽口剪切法(double-notched shear,DNS)研究了二维(two dimensional,2D)碳纤维增强碳化硼-碳化硅[2DC/(BCx-SiC)n]复合材料的高温层间剪切性能,用扫描电子显微镜观察断口形貌。结果表明:在25~1200℃范围内,温度对2DC/(BCx-SiC)n复合材料的层间剪切强度有明显影响,在900℃时材料的层间剪切强度最高可达40.0MPa,分别比25℃和1200℃的高约13%和8%,略高于700℃的。此外,C/(BCx-SiC)n的层间剪切强度始终高于C/SiC的强度,且2种材料的层间剪切强度随温度变化规律相似。断口分析表明:层间剪切失效发生在基体内部或基体/纤维界面上,而纤维并没有受到损伤。  相似文献   

3.
熊伟  矫桂琼  刘红霞 《硅酸盐学报》2008,36(8):1057-1061
采用紧凑拉伸试件进行循环加载,研究了化学气相渗透工艺制备的二维平纹编织碳布增强碳化硅(C/SiC)复合材料的断裂韧性.基于实验结果,应变能释放率可分为弹性应变能释放率和不可逆应变能释放率,分别分析了弹性应变能释放率和不可逆应变能释放率随裂纹扩展的变化规律.发现在裂纹扩展初始阶段,裂纹分叉引起不可逆应变能释放率远高于弹性应变能释放率.随裂纹进一步扩展,不可逆应变能释放率迅速下降;最终两部分能量释放率都达到相近的平稳值,且不可逆应变能释放率大于弹性应变能释放率.对试件断裂表面进行扫描电镜分析,发现在裂纹尖端区域基体主要是剪切损伤,纤维具有很长的拔出长度.  相似文献   

4.
采用双槽口剪切法(double-notchcd shear,DNS)研究了二维(twodimensional,2D)碳乡纤维增强碳化硼-碳化硅[2DC/(BCx-SiC)]复合材料的高温层间剪切性能,用扫描电子显微镜观察断口彤貌.结果表明:在25~1200℃范围内.温度对2DC/(BCx-SiC)n复合材料的层间剪切强度有明显影响,在900℃时材料的层间剪切强度最高可达40.0MPa,分别比25℃和1200℃的商约13%和8%,略高于700℃的.此外,C/(BCx-SiC)n的层间剪切强度始终高于C/SiC的强度,且2种材料的层间剪切强度随温度变化规律相似.断口分析表明:层间剪切失效发生在基体内部或基体/纤维界面上,而纤维并没有受到损伤.  相似文献   

5.
2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征   总被引:1,自引:0,他引:1  
通过单向拉伸和分段式加载-卸载实验,研究了二维编织C/SiC复合材料的宏观力学特性和损伤的变化过程.用扫描电镜对样品进行微观结构分析,并监测了载荷作用下复合材料的声发射行为.结果表明:在拉伸应力低于50MPa时,复合材料的应力-应变为线弹性;随着应力的增加,材料模量减小,非弹性应变变大,复合材料的应力-应变行为表现为非线性直至断裂.复合材料的平均断裂强度和断裂应变分别为23426MPa和0.6%.拉伸破坏损伤表现为:基体开裂,横向纤维束开裂,界面层脱粘,纤维断裂,层间剥离和纤维束断裂.损伤累积后最终导致复合材料交叉编织节点处纤维束逐层断裂和拔出,形成斜口断裂和平口断裂.  相似文献   

6.
考察了未经和经过1200℃,1h氧化预处理的两种B4C-SiC/C复合材料样品BS2020和BS1530在800℃、1000℃(干燥气)及1000℃潮湿空气中的氧化行为。结果表明:经过1200℃氧化预处理后,除了BS1530在800℃(干燥空气)氧化过程的自愈合抗氧化性改善程度有限外,BS1530在1000℃(干燥和潮湿空气)、BS2020在800℃(干燥空气)和1000℃(干燥和潮湿空气)氧化过  相似文献   

7.
王毅强  张立同  成来飞  马军强 《硅酸盐学报》2008,36(8):1062-1068,1078
采用化学气相渗透法制备了2维和2.5维碳纤维增强碳化硅(carbon-fiber-reinforced silicon carbide,C/SiC)复合材料,沿经纱(纵向)和纬纱(横向) 2个方向对2种复合材料进行了室温拉伸性能测试,并从预制体结构和原始缺陷分布的角度对比分析了两者力学性能之间的差异.结果表明:两种C/SiC复合材料均表现出明显的非线性力学行为,在经纱方向和纬纱方向上,2维C/SiC复合材料力学性能表现为各向同性,而2.5维C/SiC复合材料力学性能则表现出明显的各向异性:经纱方向上2.5维C/SiC复合材料的拉伸强度和拉伸模量(326 MPa,153 GPa)均高于2维C/SiC复合材料的(245 MPa,96 GPa),纬纱方向上的(145 MPa,62 GPa)均低于2维C/SiC复合材料的(239 MPa,90 GPa).两种复合材料的拉伸断裂行为均表现为典型的韧性断裂,并伴有大量的纤维拔出.两种复合材料中纱线断裂均呈现出多级台阶式断裂方式,但其断裂位置并不相同.2.5维C/SiC复合材料中由于经纱路径近似于正弦波,弯曲程度较大,在纱线交叉点处造成明显的应力集中,因此经纱多在纱线交叉点处断裂;而纬纱由于其路径近乎直线,应力集中现象不明显,因此纬纱断裂位置呈随机分布.2维C/SiC复合材料中经纱和纬纱由于其路径类似于2.5维C/SiC复合材料中的经纱,因此其断裂位置也多在纱线交叉点处.微观结构观察表明不同的编织结构是造成两种复合材料在不同方向上力学性能差异的主要原因.  相似文献   

8.
凌志达 《硅酸盐学报》1994,22(3):288-294
根据Si-C-O-N系统的相稳定性计算,绘制了于平衡状态下相稳定性与N2分压和O2分压以及相稳定性与N2分压和SiO分压的关系图,发展了以气态SiO与碳纤维反应将碳纤维转变为SiC纤维,以及气态SiO与CO反应于碳纤维上形成SiC涂层的新方法。本文介绍这两种方法的工艺原理和主要实验结果。  相似文献   

9.
采用化学气相沉积法,在1 100 ℃,在碳纤维增强碳化硅复合材料表面制备SiC涂层,研究了涂层连续沉积和分4次沉积(每次沉积时间为6 h)所制备的SiC涂层的微观结构和涂层样品的氧化性能.结果表明:两种SiC涂层的厚度均约为40 μm,且4次沉积制备的SiC涂层为一个连续的整体.涂层连续沉积时,表面只出现裸露裂纹;分4次沉积制备时,表面出现大量边缘有SiC生长锥的附着裂纹,附着裂纹在高温氧化时易发生自愈合.与连续涂层样品相比,4次涂层能显著提高C/SiC样品的抗氧化性能.4次涂层样品经1 400 ℃,50 h氧化后,质量损失为0.88%,质量损失速率稳定在6.30 × 10-5 g/(cm2?h),且4次涂层样品具有优异的抗热震性能.  相似文献   

10.
11.
短切碳纤维含量对Csf/SiC复合材料力学性能的影响   总被引:1,自引:0,他引:1  
以Si作为主要烧结助剂,采用热压烧结法制备了短切碳纤维-碳化硅(short carbon fiber reinforced SiC composite,Csf/SiC)复合材料.采用X射线衍射仪、扫描电镜、硬度仪以及力学性能试验机等,研究了Csf含量对所制备材料的结构、组成、形貌及复合材料的弯曲强度、Vickers硬度和断裂韧性的影响.结果表明:采用热压法能制备出致密且Csf分布均匀的Csf/SiC复合材料.Csf/SiC复合材料的弯曲强度随Csf含量增加先增大后减小,含15%(体积分数,下同)Csf的Csf/SiC样品强度最高,达到466MPa,并且Csf含量小于30%的Csf/SiC样品强度高于无纤维SiC材料.材料的Vickers硬度随Csf含量增加而降低.Csf/SiC样品的断裂韧性随Csf含量增加而逐渐增大,Csf含量为53%时,达到最大为5.5MPa·m1/2,与无纤维SiC样品相比,增加近2倍.  相似文献   

12.
采用水热电泳沉积法在SiC–C/C复合材料表面制备了纳米碳化硅和二硅化钼的复相(SiCn–MoSi2)抗氧化涂层。采用X射线衍射和扫描电子显微镜等对制备涂层的晶相组成、表面及断面微观结构进行了表征。研究了水热温度对制备涂层的结构及高温抗氧化性能的影响,分析了涂层在1 600℃静态氧化行为及失效机理。结果表明:外涂层主要由MoSi2和β-SiC晶相组成。复相外涂层的致密程度、厚度及抗氧化性能随着水热温度的升高而提高。SiCn–MoSi2/SiC复合涂层具有较好的抗氧化和抗热震能力,在1 600℃氧化80 h后氧化质量损失为3.6×10–3 g/cm2。复合涂层在1 600℃的氧化失效主要是由于经过长时间氧化后SiO2玻璃膜层不能及时有效填补涂层中的缺陷,涂层中出现贯穿性的裂纹和孔洞导致的。  相似文献   

13.
采用包埋技术在碳纤维增强碳(carbon fiber reinforced carbon,C/C)复合材料表面制备了碳化硅-硅化铪-硅化钽(SiC-HfSi2-TaSi2)抗烧蚀复合涂层.采用氧已炔火焰烧蚀试验评价了. C/C复合材料样品的抗烧蚀性能.通过X射线衍射分析、扫描电镜观察及能谱分析研究了SiC-HfSi-TaSi2作为 C/C复合材料抗烧蚀涂层的表面和断面相组成、元素分布及形貌.结果表明:由于烧蚀过程中生成的Hf02,Ta205具有高温稳定性,使得该涂层表现 出良好的抗烧蚀性能,在3 000℃下烧蚀20s后,线烧蚀率为0.009 mm/s,质量烧蚀率为0.003 85 g/s.  相似文献   

14.
采用纳秒激光在ZrB2-SiC-Graphite(ZSG)陶瓷材料中引入了尖锐的V型切口,切口尖端半径小于1μm。通过单边V型切口梁法测得ZSG陶瓷材料的断裂韧性为3.88MPa·m^1/2,与单边预裂纹梁法结果吻合,表明激光切口法的有效性。研究了断裂韧性与激光切口深度和试样厚度比值(a/W)的关系,对于ZSG陶瓷,试样的a/W取值范围为0.1~0.6时能获得准确的断裂韧性值。  相似文献   

15.
纤维类型对Cf/SiC复合材料力学性能的影响   总被引:5,自引:0,他引:5  
本工作以AIN和Y2O3为烧结助剂,采用先驱体转化-热压烧结的方法制备出了Cf/SiC复合材料,研究了纤维类型影响复合材料力学性能的本质原因,由于T300纤维的制备温度明显低于M40JB纤维的制备温度,因此,与M40JB纤维相比,T300纤维的石墨化程度较低且含有较多的杂质,从而导致T300纤维表面的活性强,而M40JB纤维表面的活性较弱,正是这种结构和成分的差别,使T300纤维与基体的结合较强,而M40JB纤维与基体的结合较弱,因此以T300纤维为增强的复合材料呈现脆性断裂,而以M40JB纤维为增强相的复合材料则呈现韧性断裂,谈复合材料具有较好的力学性能。  相似文献   

16.
采用包埋法制备了碳纤维增强碳(carbon fiber reinforced carb on composites,C/C)复合材料表面多层涂层,包括SiC,TiC内层,SiC,TiC中间层以及SiC+TiC复合外层。利用场发射扫描电镜和X射线衍射对其表面和断面的结构进行研究。结果显示:和TiC内层相比较,SiC内层较厚而且致密,具多孔结构且和C/C复合材料结合紧密;TiC内层较薄且和C/C复合材料结合松散。制备的SiC+TiC复合外层由SiC,TiC和Ti3SiC2组成。  相似文献   

17.
根据Si-C-O-N系统的相稳定性计算,绘制了于平衡状态下相稳定性与N_2分压和O_2分压以及相稳定性与N_2分压和SiO分压的关系图,发展了以气态SiO与碳纤维反应将碳纤维转变为SiC纤维,以及气态SiO与CO反应于碳纤维上形成SiC涂层的新方法。本文介绍这两种方法的工艺原理和主要实验结果。  相似文献   

18.
以B4C与Si3N4和少量SiC,TiC为原料,Al2O3和Y2O3为烧结助剂,烧结温度为1 800~1 880℃,压力为30 MPa的热压条件下制备(SiC,TiB2)/B4C复合材料.用透射电子显微镜、扫描电子显微镜和能谱分析进行显微结构分析.结果表明:在烧结过程中反应生成了SiC,TiB2和少量的BN.复合材料的主晶相之间有长棒状架构弥散相和束状弥散相,在部分B4C晶粒内部出现了内晶结构.结合对复合材料性能的分析表明:新形成相、均匀细晶和棒状结构对提高材料的性能具有重要作用.通过对材料断口形貌和裂纹扩展模式分析认为,复合材料的断裂机制主要为裂纹偏转.  相似文献   

19.
研究了不同SiC晶须含量的Al2O3/TiB2/SiCw陶瓷刀具材料的断裂韧性随温度的变化规律。结果表明:Al2O3/TiB2/SiCW陶瓷材料的K1C在1000℃内随温度的升高而增大;晶须含量越大,通过计算分析表明,随温度的升高粘裂时拔出的晶须大大增多,当晶须体积含量(下同)为20%时,Al2O3/TiB2/SiCw陶瓷在室温时只有长径比小于2.87的晶须在断裂时才有可能产生拔出,而在900℃时  相似文献   

20.
三维针刺C/(SiC-TaC)复合材料的烧蚀性能及烧蚀机理   总被引:2,自引:0,他引:2  
为了提高连续碳纤维增强碳化硅(SiC)复合材料的抗烧蚀性能,采用浆料浸渗结合化学气相浸渗SiC工艺制备出三维针刺碳纤维增强SiC-碳化钽(TaC)复合材料.采用氧-乙炔烧蚀试验测试复合材料烧蚀性能,用扫描电子显微镜分析烧蚀后材料表面的微观形貌,用X射线衍射、表面能谱分析对材料烧蚀后成分进行分析表征.结果表明:C/SiC-TaC)复合材料线烧蚀率为0.07mm/s,相对C/SiC复合材料而言表现出较好的抗烧蚀能力,添加TaC有助于提高C/SiC复合材料抗烧蚀性能.在中心区域,出现明显烧蚀坑,纤维与基体被致密的Ta2O5层覆盖,起到保护C纤维和基体的作用,复合材料的烧蚀以升华、氧化和机械剥蚀为主.在边缘和过渡区域,烧蚀以热化学氧化烧蚀为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号