首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we review the peridynamic model for brittle fracture and use it to investigate crack branching in brittle homogeneous and isotropic materials. The peridynamic simulations offer a possible explanation for the generation of dynamic instabilities in dynamic brittle crack growth and crack branching. We focus on two systems, glass and homalite, often used in crack branching experiments. After a brief review of theoretical and computational models on crack branching, we discuss the peridynamic model for dynamic fracture in linear elastic–brittle materials. Three loading types are used to investigate the role of stress waves interactions on crack propagation and branching. We analyze the influence of sample geometry on branching. Simulation results are compared with experimental ones in terms of crack patterns, propagation speed at branching and branching angles. The peridynamic results indicate that as stress intensity around the crack tip increases, stress waves pile-up against the material directly in front of the crack tip that moves against the advancing crack; this process “deflects” the strain energy away from the symmetry line and into the crack surfaces creating damage away from the crack line. This damage “migration”, seen as roughness on the crack surface in experiments, modifies, in turn, the strain energy landscape around the crack tip and leads to preferential crack growth directions that branch from the original crack line. We argue that nonlocality of damage growth is one key feature in modeling of the crack branching phenomenon in brittle fracture. The results show that, at least to first order, no ingredients beyond linear elasticity and a capable damage model are necessary to explain/predict crack branching in brittle homogeneous and isotropic materials.  相似文献   

2.
Characteristics of dynamic brittle fracture captured with peridynamics   总被引:3,自引:0,他引:3  
Using a bond-based peridynamic model, we are able to reproduce various characteristics of dynamic brittle fracture observed in experiments; crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. We analyze the source of asymmetry in the crack path in numerical simulations with an isotropic material and symmetric coordinates about the pre-crack line. Asymmetries in the order of terms in computing the nodal forces lead to different round-off errors for symmetric nodes about the pre-crack line. This induces the observed slight asymmetries in the branched crack paths. A dramatically enhanced crack-path instability and asymmetry of the branching pattern are obtained when we use fracture energy values that change with the local damage. The peridynamic model used here captures well the experimentally observed successive branching events and secondary cracking. Secondary cracks form as a direct consequence of wave propagation and reflection from the boundaries.  相似文献   

3.
Predicting crack propagation with peridynamics: a comparative study   总被引:2,自引:1,他引:1  
The fidelity of the peridynamic theory in predicting fracture is investigated through a comparative study. Peridynamic predictions for fracture propagation paths and speeds are compared against various experimental observations. Furthermore, these predictions are compared to the previous predictions from extended finite elements (XFEM) and the cohesive zone model (CZM). Three different fracture experiments are modeled using peridynamics: two experimental benchmark dynamic fracture problems and one experimental crack growth study involving the impact of a matrix plate with a stiff embedded inclusion. In all cases, it is found that the peridynamic simulations capture fracture paths, including branching and microbranching that are in agreement with experimental observations. Crack speeds computed from the peridynamic simulation are on the same order as those of XFEM and CZM simulations. It is concluded that the peridynamic theory is a suitable analysis method for dynamic fracture problems involving multiple cracks with complex branching patterns.  相似文献   

4.
5.
The peridynamic theory is employed to predict crack growth patterns in quenched glass plates previously considered for an experimental investigation. The plates containing single and multiple pre-existing initial cracks are simulated to investigate the effects of peridynamic and experimental parameters on the crack paths. The critical stretch value in the peridynamic theory and the gap size between the heat reservoirs are determined to be the most significant parameters. The simulation results are in good agreement with the experimental observations published in the literature.  相似文献   

6.
This is the third in a series of four papers in which problems of dynamic crack propagation are examined experimentally in large, thin sheets of Homalite-100 such that crack growth in an unbounded plate is simulated. In the first paper crack initiation resulting from stress wave loading to the crack tip as well as crack arrest were reported. It was found that for increasing rates of loading in the microsecond range the stress intensity required for initiation rises markedly. Crack arrest occurs abruptly without any deceleration phase at a stress intensity lower than that which causes initiation under quasi-static loading.In the second paper we analyze the occurrence of micro cracks at the front of the running main crack which control the rate of crack growth. The micro cracks are recorded by real time photography. By the same means it is shown that these micro cracks grow and turn away smoothly from the direction of the main crack in the process of branching.In the present paper we report results on crack propagation and branching. It is found that crack propagation occurs at a constant velocity although the stress intensity factor changes markedly. Furthermore, the velocity is determined by the stress wave induced intensity factor at initiation. The terminal velocity in Homalite-100 was found to be about half the Rayleigh wave speed (0.45 C r ). These observations are analyzed in terms of a microcrack model alluded to in the second paper of this series. A mechanism for crack branching is proposed which considers branching to be a natural evolution from a cloud of microcracks that accompany and lead the main crack. These results are believed to apply to quasi-brittle materials other than Homalite-100 and the reasons for this belief are discussed briefly in the first paper of this series.In the final paper of the series the effect of stress waves impinging on the tip of a rapidly moving crack is examined. Waves affect the velocity and the direction of propagation as well as the process of crack branching.  相似文献   

7.
A generalized model is developed to investigate dynamic crack propagation in isotropic solids under mixed-mode I/II conditions using state-based peridynamics. The critical stretch and the critical strain energy release rate (ERR) are related within the state-based peridynamic framework to construct a computational model capable of capturing fracture energy of the kinked cracks. A novel formulation is presented to predict crack growth trajectory and pattern by combining the traditional expression of ERR and the peridynamic states of the crack opening and sliding displacements. The proposed model is used to predict dynamic fracture behavior in polymethyl methacrylate (PMMA) and soda-lime glass using various test specimens, including cracked semi-circular bending (SCB), cracked rectangular plate, and single edge-notched tensile (SENT) specimens, and under different dynamic loading conditions. The developed model is examined against the numerical and experimental data available in the literature, and a very good agreement is observed.  相似文献   

8.

This study is aimed at evaluating continuum scale predictions of dynamic crack propagation and branching in brittle materials using local damage modeling. Classical experimental results on crack branching in PMMA and the corresponding nonlocal modeling results by Wolff et al. (Int J Numer Meth Eng 101(12):933, 2015) are used as a benchmark. An isotropic damage model based on a frame-invariant effective strain is adapted. Mesh objectivity is achieved by calibrating the damage model for a suitable element size and subsequently retaining that mesh size in all subsequent analyses. Crack propagation and branching are predicted by simulating accurately the test conditions. It is found that a local, rate-independent damage model considerably overpredicts the dynamic crack velocity and the extent of crack branching. Subsequently, the effect of various strain rate-dependent phenomena, viz. material viscoelasticity, rate-dependent strength, fracture energy, and failure strain is evaluated. Incorporating the material strain rate effects is found to improve the predictions and match the test data. In this regard, radially scaling the damage law is found to work the best. Despite an overprediction of micro-branching, the macro-crack branching is found to occur in agreement with the Yoffe instability criterion. Overall, various experimentally observed aspects of dynamic cracks are reproduced, including acceleration of cracks to a steady state velocity, increased micro-branching and macro-branching with increased strain rates, and crack velocity dependence of energy dissipation and fracture surface area.

  相似文献   

9.
An experimental study has been conducted to investigate the initiation, propagation, and arrest of bimaterial interface cracks subjected to controlled stress wave loading in the form of a tensile dilatational stress wave pulse. The tensile pulse is generated by detonating lead azide explosive in a specially designed specimen. Dynamic loading of the bimaterial interface results in crack initiation, propagation, and arrest, all in the same experiment. This failure event is observed using photoelasticity in conjunction with high speed photography. Full field data from the experimentally obtained isochromatic fringe patterns is analyzed to determine time histories of various fracture parameters such as the crack tip speed, the dynamic complex stress intensity factor, the energy release rate, and the mixity. The experimental data is also used to quantify the values of the dynamic initiation and arrest toughness and to evaluate a recently proposed dynamic interface fracture criterion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The influence of material heterogeneities is studied in the context of dynamic failure. We consider a pre-strained plate problem, the homogeneous case of which has been widely studied both experimentally and numerically. This setup is used to isolate the effects of the elastic field resulting from pre-straining and stress wave interactions throughout the crack propagation by adding stiffer and denser regions in the plate. While the crack tip is pushed away by stiffer inclusions, it is attracted to the denser ones. With the presence of denser media, only a portion of the total elastic energy in the system is effectively used to drive crack propagation, leading to a drop in the velocity of its tip in comparison to the homogeneous case. Crack branching is then observed at velocities much lower than the limiting velocity of the material, questioning the validity of crack velocity to be a criterion for crack branching. Instead, we introduce an effective stored energy to analyze the crack velocity and the emergence of crack branching instabilities.  相似文献   

11.
An analytical solution via the beam theory considering shear deformation effects is developed to solve the static and dynamic fracture problem in a bounded double cantilever beam (DCB) specimen. Fixed displacement condition is prescribed at the pin location under which crack arrest occurs. In the static case, at first, the compliance function of a DCB specimen is obtained and shows good agreement with the experimental results cited in the literature. Afterward, the stress intensity factor is determined at the crack tip via the energy release rate formula. In the dynamic case, the obtained governing equations for the model are solved supposing quasi‐static treatment for unstable crack propagation. Finally, a closed form expression for the crack propagation velocity versus beam parameters and crack growth resistance of the material is found. It is shown that the reacceleration of crack growth appears as the crack tip approaches the finite boundary. Also, the predicted maximum crack propagation velocity is significantly lower than that obtained via the Euler–Bernoulli theory found in the literature.  相似文献   

12.
Dynamic crack growth and branching of a running crack under various biaxial loading conditions in homogeneous and heterogeneous brittle or quasi-brittle materials is investigated numerically using RFPA2D (two-dimensional rock failure process analysis)-Dynamic program which is fully parallelized with OpenMP directives on Windows. Six 2D models were set up to examine the effect of biaxial dynamic loading and heterogeneity on crack growth. The numerical simulation vividly depicts the whole evolution of crack and captured the crack path and the angles between branches. The path of crack propagation for homogenous materials is straight trajectory while for heterogeneous materials is curved. Increasing the ratio of the loading stress in x-direction to the stress in y-direction, the macroscopic angles between branches become larger. Some parasitic small cracks are also observed in simulation. For heterogeneous brittle and quasi-brittle materials coalescence of the microcracks is the mechanism of dynamic crack growth and branching. The crack tip propagation velocity is determined by material properties and independent of loading conditions.  相似文献   

13.
In this paper, the arbitrary Lagrangian Eulerian formulation is employed for finite element modelling of dynamic crack propagation problem. The application phase simulation of computational dynamic fracture is applied to model by which the crack propagation history and variation of crack velocity are predicted using the material dynamic fracture toughness. The dynamic solution of problem is accomplished using the implicit time integration method. The convective terms due to mesh‐material motion are taken into account via the convection equation. A robust and efficient mesh motion technique, that its equations need not to be solved at every time step, is employed in Eulerian phase. The mesh connectivity is preserved during the analysis. So, the successive remeshing of model is eliminated. When the dynamic fracture criterion is satisfied for crack growth, the presented algorithm allows the crack to advance by splitting the material particle at the crack tip. The dynamic energy release rate is calculated at each time step to determine dynamic stress intensity factor. The predicted results are compared with those obtained through the experimental study and remeshing technique cited in the literature. The proposed computational algorithm leads to an accurate and efficient simulation of dynamic crack propagation process.  相似文献   

14.
This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A new state-based peridynamic model is proposed to quantitatively analyze fracture behavior (crack initiation and propagation) of materials. In this model, the general relationship of the critical stretch and the critical energy release rate is for the first time obtained for the state-based peridynamic model of linear elastic brittle materials, and the released energy density is defined to quantitatively track the energy released during crack propagation. The three-dimensional (3D) and two-dimensional (2D) (for both plane stress and plane strain) cases are all considered. As illustrations, the compact tension and double cantilever beam tests are analyzed using the proposed model, which is capable of successfully capturing fracture behaviors (e.g., crack path and concentration of strain energy density) of the considered fracture tests. The characteristic parameters (i.e., critical load, critical energy release rate, etc.) are calculated and compared with available experimental and numerical data in the literature to demonstrate validity of the proposed model.  相似文献   

16.
17.
In this paper, the plastic model of ordinary state‐based peridynamics is established. The size and shape of plastic zone around crack tips with the different inclination angles are simulated using ordinary state‐based peridynamics. Comparison of the size and shape of plastic zone around the crack tips obtained from peridynamic solution and analytic solution is made. It is found that the relative errors between the analytical and peridynamic solution are very little. Therefore, it is feasible to predict the plastic zone around crack tips using ordinary state‐based peridynamics.  相似文献   

18.
为了对动态荷载作用下水泥粉煤灰砂浆的裂缝动态扩展行为进行研究,提出了一种大尺寸带V型底边的半圆边裂纹(SECVB)试件,其V形底部具有止裂功能。SECVB试件的V形底部设计为180°,150°和120°三个角度。采用落锤冲击装置进行了冲击试验,并使用裂纹扩展计(CPG)用于测量裂纹扩展的相关参数。利用有限差分程序AUTODYN对裂纹扩展行为进行了数值模拟,并用有限元程序ABAQUS计算了裂纹的动态应力强度因子(DSIF);根据CPG测量的裂纹萌生时间和扩展时间来确定临界应力强度因子。试验和数值模拟结果表明,SECVB试件适合于研究动态荷载作用下水泥粉煤灰砂浆的裂纹扩展行为和止裂行为。在裂纹扩展过程中,裂纹可能在一段时间内止裂,并且裂纹在起始时刻的断裂韧度高于裂纹扩展时的断裂韧度。  相似文献   

19.
To study crack dynamic propagation behaviour and rock dynamic fracture toughness, a single cleavage triangle (SCT) specimen was proposed in this paper. By using these specimens and a drop‐weight test system, impact experiments were conducted, and the crack propagation velocity and the fracture time were measured by using crack propagation gauges. To examine the effectiveness of the SCT specimen and to predict the test results, finite difference numerical models were established by using AUTODYN code, and the simulation results showed that the crack propagation path agrees with the test results, and crack arrest phenomena could happen. Meanwhile, by using these numerical models, the crack dynamic propagation mechanism was investigated. Finite element code ABAQUS was applied in the calculation of crack dynamic stress intensity factors (SIFs) based on specimen dimension and the loading curves measured, and the curves of crack dynamic SIFs versus time were obtained. The fracture toughness (including initiation toughness and propagation toughness) was determined according to the fracture time and crack speeds measured by crack propagation gauges. The results show that the SCT specimen is applicable to the study of crack dynamic propagation behaviour and fracture toughness, and in the process of crack propagation, the propagation toughness decreases with crack propagation velocity, and the crack arrest phenomena could happen. The critical SIF of an arrest crack (or arrest toughness) was higher than the crack propagation toughness but was lower than the initiation toughness.  相似文献   

20.
Crack propagation in concrete gravity dams is investigated using scaled boundary polygons coupled with interface elements. The concrete bulk is assumed to be linear elastic and is modelled by the scaled boundary polygons. The interface elements model the fracture process zone between the crack faces. The cohesive tractions are modelled as side-face tractions in the scaled boundary polygons. The solution of the stress field around the crack tip is expressed semi-analytically as a power series. It reproduces the singular and higher-order terms in an asymptotic solution, such as the William’s eigenfunction expansion when the cohesive tractions vanish. Accurate results can be obtained without asymptotic enrichment or local mesh refinement. The stress intensity factors are obtained directly from their definition and provide a convenient and accurate means to assess the zero-K condition, which determines the stability of a cohesive crack. The direction of crack propagation is determined from the maximum circumferential stress criterion. To accommodate crack propagation, a local remeshing algorithm that is applicable to any polygon mesh is augmented by inserting cohesive interface elements between the crack surfaces as the cracks propagate. Three numerical benchmarks involving crack propagation in concrete gravity dams are modelled. The results are compared to the experimental and other numerical simulations reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号