首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giving the guidance to select suitable operating conditions.  相似文献   

2.
In the radiant section of cracking furnace, the thermal cracking process is highly coupled with turbulent flow, heat transfer and mass transfer. In this paper, a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme, combined with a comprehensive rigorous computational fluid dynamics(CFD) model. The eddy-dissipation-concept(EDC) model is introduced to deal with turbulence-chemistry interaction of cracking gas, especially for the multi-step radical kinetics. Considering the high aspect ratio and severe gradient phenomenon, numerical strategies such as grid resolution and refinement, stepping method and relaxation technique at different levels are employed to accelerate convergence. Large scale of radial nonuniformity in the vicinity of the tube wall is investigated. Spatial distributions of each radical reaction rate are first studied, and made it possible to identify the dominant elementary reactions. Additionally, a series of operating conditions including the feedstock feed rate, wall temperature profile and heat flux profile towards the reactor tubes are investigated. The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.  相似文献   

3.
工业PTA溶剂脱水过程动态模拟与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.  相似文献   

4.
Chinese rice wine making is a typical simultaneous saccharification and fermentation(SSF) process.During the fermentation process,temperature is one of the key parameters which decide the quality of Chinese rice wine.To optimize the SSF process for Chinese rice wine brewing,the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model.The kinetic parameters as a function of temperature were evaluated using the software Origin8.0.Combing these functions with the mathematical model,an appropriate form of the model equations for the SSF considering the effects of temperature were developed.The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model.The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm.The optimum temperature profile began at a low temperature of 26 °C up to 30 h.The operating temperature increased rapidly to 31.9 °C,and then decreased slowly to 18 °C at 65 h.Thereafter,the temperature was maintained at18 °C until the end of fermentation.A maximum ethanol production of 89.3 g·L~(-1)was attained.Conceivably,our model would facilitate the improvement of Chinese rice wine production at the industrial scale.  相似文献   

5.
工业PTA氧化过程的多目标优化   总被引:1,自引:0,他引:1       下载免费PDF全文
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process model that has been proved to describe industrial process quite well. The model is a semiempirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithm applied in this study is non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ). The performance of NSGA-II is further illustrated by application to the title process.  相似文献   

6.
Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid. In a mm bubble column reactor, the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2&#8226;4H2O as catalyst. The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance. The results showed that [Co3+] reached the maximum at about 25-30 min. [Co3+] increased with increasing Co catalyst amount at total Co concentration <150 mg&#8226;L-1 of toluene. The conversion of toluene, yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+]max. A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.  相似文献   

7.
In this paper,a kinetics model for the liquid-phase oxidation of 2-methyl-6-acetyl-naphthalene to 2,6-naphthalene dicarboxylic acid catalyzed by cobalt-manganese-bromide is proposed.The effects of the reaction temperature,catalyst concentration and ratio of catalyst on the time evolution of the experimental concentration for the constituents including raw material,intermediates and product are investigated.The model parameters are determined in a nonlinear optimization,minimizing the difference between the simulated and experimental time evolution of the product composition obtained in a semi-batch oxidation reactor where the gas and liquid phase were well mixed.The kinetics data demonstrate that the model is suitable to the liquid-phase oxidation of 2-methyl-6-acetyl-naphthalene to 2,6-naphthalene dicarboxylic acid.  相似文献   

8.
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals (ethylene, propyl-ene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of high-temperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature (up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas (LPG) and naphtha are used as a feedstock. The detailed data are obtain-ed on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases (LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantial y higher than in current technology.  相似文献   

9.
One of the commercial means to convert heavy oil residue is hydrocracking in an ebullated bed. The ebullated bed reactor includes a complex gas–liquid–solid backmixed system which attracts the attention of many scientists and research groups. This work is aimed at the calculation of the internal recycle flow rate and understanding its effect on other parameters of the ebullated bed. Measured data were collected from an industrial scale residual hydrocracking unit consisting of a cascade of three ebullated bed reactors. A simplified block model of the ebullated bed reactors was created in Aspen Plus and fed with measured data. For reaction yield calculation, a lumped kinetic model was used. The model was verified by comparing experimental and calculated distillation curves as well as the calculated and measured reactor inlet temperature. Influence of the feed rate on the recycle ratio(recycle to feed flow rate) was estimated. A relation between the recycle flow rate, pump pressure difference and catalyst inventory has been identified. The recycle ratio also affects the temperature gradient along the reactor cascade. Influence of the recycle ratio on the temperature gradient decreased with the cascade member order.  相似文献   

10.
In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA-5118.For acetaldehyde in acetone with ferric ion as catalyst,the optimized process conditions were presented. The main factors influencing the yield,selectivity and conversion are residence time,temperature and acetaldehyde concentration,respectively.The temperature range checked is from 30 to 65℃.High yield of 81.53%with high se- lectivity of 91.84?n be obtained at higher temperature of 55℃when the residence time is 5.5min and the acet- aldehyde concentration is 9.85%(by mass).And there is a critical acetaldehyde concentration point(Cccp)between 18%and 19.5%(by mass).At temperature less than 55℃,the highest yield to peracetic acid at each temperature level increases with temperature when the acetaldehyde concentration is below Cccp and decreases with temperature when the acetaldehyde concentration is above Cccp.  相似文献   

11.
通过分析甲苯氧化反应的特点,依据反应动力学模型和物料衡算关系,提出了对甲苯液相催化氧化过程进行稳态模拟的方法,研究了稳态连续操作时反应温度、进料甲苯流量等操作条件对苯甲酸浓度的影响。采用的反应动力学模型考虑了苯甲醛、苯甲醇等组分对反应的影响,并用生产数据对反应动力学参数进行了重新回归。使用回归得到的动力学参数进行稳态模拟,结果显示:苯甲酸质量分数的计算值与测量值的相对误差在5%以内。  相似文献   

12.
建立了一套甲苯液相空气氧化的连续反应装置,在工业条件下进行了动力学实验研究。在排除氧气、催化剂质量分数等影响因素下,建立了反应动力学模型,并回归得到模型参数。用该模型计算得到的甲苯转化率和实验结果对比,最大误差4.72%,平均误差2.36%。研究结果表明,甲苯转化率受温度和停留时间的影响较大,尤以温度影响更为明显;主产物选择性受温度和停留时间的影响较小,但停留时间延长,会加剧苯甲醛向苯甲酸转化。  相似文献   

13.
The production of benzoic acid from toluene in the liquid phase with pure oxygen was studied. Investigations have been carried out with a view to determining the most suitable reaction conditions with respect to operating variables including oxygen flow rate, reaction temperature, batch time and catalyst loading. In a series of batch experiments carried out at 4 atm, the optimum values of mole ratio of oxygen to toluene, temperature, reaction time, and catalyst loading were found to be 2, 157 °C, 2 h and 0.57 g/L, respectively. In addition, a kinetic study was carried out by taking into consideration the optimum reaction conditions. The model dependent on the formation of benzyl radical was found to be feasible for describing the catalytic oxidation of toluene to benzoic acid in the liquid phase. The activation energy was determined as 40 kJ/mol.  相似文献   

14.
甲苯液相空气氧化是环境友好的苯甲酸和苯甲醛生产工艺。根据在模拟工业条件下测定的动力学数据和观察到的实验现象,提出了该反应的反应机理和反应网络,建立了相应的动力学模型。根据该动力学方程,对现有工业生产过程进行了模拟,发现现有工业过程处于严重供氧不足的情况。提出了3种强化方案并分别对其进行了模拟计算和比较。模拟结果表明,通过增大空气供给量和采用富氧空气氧化均可有效强化现有工业生产过程。采用富氧空气氧化,其甲苯转化率可提高到22.24%,甲苯反应量可增大57%。采用增大空气量的方法,可提高甲苯反应量31%,甲苯转化率可提高到18.61%。若同时增大甲苯和空气负荷,甲苯反应量可提高71%。  相似文献   

15.
葛皓  陈光文  袁权  李恒强 《化工学报》2007,58(8):1967-1972
微通道反应器具有优良的传热、传质性能,能有效避免催化剂床层内热点的形成,为研究强放热反应动力学提供有利条件。开展了微反应器内的V2O5/TiO2催化剂上的甲苯气相选择氧化动力学研究,在简化反应网络的基础上建立了动力学模型,并给出动力学参数。该模型能较好地反映和预测较宽的反应条件范围内的甲苯气固相催化氧化反应转化率及产物分布,为优化操作条件提供依据。  相似文献   

16.
文章针对传统苯甲酸生产工艺中产生的乏汽开发了乏汽回收技术,将低热蒸汽有效用于中和、干燥工段的加热,实现了节能减排的目的。在间歇操作的基础上,开发了甲苯连续催化氧化工艺。当离心多孔气体分布器的转速为550 r/min时,苯甲酸的收率可达50%。混合液体经过连续精馏不仅可得到苯甲酸,而且还可得到附加值很高的苯甲醇、苯甲醛以及苯甲酸苄酯。  相似文献   

17.
锰卟啉-醋酸钴复合催化体系对甲苯氧气氧化的催化作用   总被引:2,自引:0,他引:2  
张帅  刘强  郭灿城 《化工学报》2008,59(6):1396-1400
研究了在无溶剂体系中,对氯四苯基锰卟啉[T(p-Cl)PPMnCl]和醋酸钴[Co(OAc)2]复合催化下,空气氧化甲苯制苯甲醛、苯甲醇和苯甲酸的新工艺。实验发现,T(p-Cl)PPMnCl/Co(OAc)2为复合催化剂时比单独使用T(p-Cl)PPMnCl 或Co(OAc)2时有更高的甲苯转化率和苯甲醛、苯甲醇、苯甲酸的收率,表现出明显的复合催化作用。研究表明,反应温度、反应时间和催化剂比例对T(p-Cl)PPMnCl/Co(OAc)2的复合催化效果有影响。  相似文献   

18.
高文强  焦纬洲  刘有智 《化工学报》2020,71(3):1045-1052
提出一种超重力环境下甲苯合成苯甲酸的新方法,对比不同臭氧化工艺合成苯甲酸的收率,研究了反应溶剂、臭氧气相浓度、过氧化氢与甲苯的摩尔比、超重力因子、液体流量对苯甲酸收率的影响规律。研究结果表明:RPB (rotating packed bed)-O3/H2O2较其他工艺具有更高的反应性能;得到优化的工艺条件是反应溶剂为乙腈、臭氧气相浓度为80 mg·L-1、过氧化氢与甲苯的摩尔比为0.15、超重力因子为40、液体流量为120 L·h-1,在优化的工艺条件下得到苯甲酸收率为45%。通过电子顺磁共振仪 (EPR)对反应过程中产生的活性自由基进行表征,结果表明,O3/H2O2体系中存在·OH。另外,用气相色谱-质谱联用仪(GC-MS)分析了中间产物,结果表明反应过程中生成的中间产物包括苯甲醇和苯甲醛。基于ERP实验和GC-MS表征结果,探索臭氧/双氧水氧化甲苯合成苯甲酸可能的反应历程。  相似文献   

19.
唐盛伟  张全忠  刘昉  梁斌 《化工学报》2005,56(9):1685-1689
甲苯液相空气氧化是环境友好的苯甲酸生产工艺.在SNIA苯甲酸生产过程中,CoC2O4&#8226;2H2O的生成导致甲苯氧化过程产生严重的结垢现象,严重影响生产的正常运行.通过液相色谱对反应中间产物进行检测,发现有痕量的对苯二酚、马来酸、草酸生成.对生成CoC2O4&#8226;2H2O的可能途径进行了分析和研究,结果表明,通过苯、甲苯及其衍生物氧化生成草酸是导致结垢的主要原因.通过改变反应物组成及操作条件,对反应温度、操作压力、空速、催化剂用量、苯含量以及含水量等因素对结垢的影响进行了研究.结果表明,当生成苯甲酸的目标反应受到抑制时,结垢明显加剧.随着反应体系中的苯含量或含水量的增大,其结垢加剧.当催化剂浓度低于100 μg&#8226;g-1时,随Co含量的增大,其结垢减轻.当反应体系中无苯甲酸时,反应受到抑制,结垢严重.当空气鼓气量低于4.0×10-3 m3&#8226;min-1时,随空气鼓气量的增大,其结垢减轻.操作压力对结垢的影响较小.反应温度低于155 ℃时,反应受到抑制同时结垢加剧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号