首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle dispersion and separation resolution of pinched flow fractionation   总被引:1,自引:0,他引:1  
This paper investigates a hydrodynamic particle separation technique that employs pinching of particles to a narrow microchannel. The particles are subject to a sudden expansion which results in a size-based particle separation transverse to the flow direction. The separation resolution and particle dispersion are measured using epifluorescence microscopy. The resolution and dispersion are predicted using a compact theoretical model. Devices are fabricated using conventional soft lithography of polydimethylsiloxane. The results show that the separation resolution is a function of the microchannel aspect ratio, particle size difference, and the microchannel sidewall roughness. A separation resolution as large as 3.8 is obtained in this work. This work shows that particles with diameters on the order of the sidewall roughness cannot be separated using pinched flow fractionation.  相似文献   

2.
Microfluidic particle sorter employing flow splitting and recombining   总被引:1,自引:0,他引:1  
Yamada M  Seki M 《Analytical chemistry》2006,78(4):1357-1362
This paper describes an improved microfluidic device that enables hydrodynamic particle concentration and size-dependent separation to be carried out in a continuous manner. In our previous study, a method for hydrodynamic filtration and sorting of particles was proposed using a microchannel having multiple branch points and side channels, and it was applied for continuous concentration and separation of polymer particles and cells. In the current study, the efficiency of particle sorting was dramatically improved by geometrically splitting fluid flow from a main stream and recombining. With these operations, particles with diameters larger than a specific value move toward one sidewall in the mainstream. This control of particle positions is followed by the perfect particle alignment onto the sidewall, which increases the selectivity and recovery rates without using a liquid that does not contain particles. In this study, a microchannel having one inlet and five outlets was designed and fabricated. By simply introducing particle suspension into the device, concentrations of 2.1-3.0-microm particles were increased 60-80-fold, and they were collected independently from each outlet. In addition, it was demonstrated that the measured flow rates distributed into each side channel corresponded well to the theoretical values when regarding the microchannel network as a resistive circuit.  相似文献   

3.
A novel method, free flow acoustophoresis (FFA), capable of continuous separation of mixed particle suspensions into multiple outlet fractions is presented. Acoustic forces are utilized to separate particles based on their size and density. The method is shown to be suitable for both biological and nonbiological suspended particles. The microfluidic separation chips were fabricated using conventional microfabrication methods. Particle separation was accomplished by combining laminar flow with the axial acoustic primary radiation force in an ultrasonic standing wave field. Dissimilar suspended particles flowing through the 350-microm-wide channel were thereby laterally translated to different regions of the laminar flow profile, which was split into multiple outlets for continuous fraction collection. Using four outlets, a mixture of 2-, 5-, 8-, and 10-microm polystyrene particles was separated with between 62 and 94% of each particle size ending up in separate fractions. Using three outlets and three particle sizes (3, 7, and 10 microm) the corresponding results ranged between 76 and 96%. It was also proven possible to separate normally acoustically inseparable particle types by manipulating the density of the suspending medium with cesium chloride. The medium manipulation, in combination with FFA, was further used to enable the fractionation of red cells, platelets, and leukocytes. The results show that free flow acoustophoresis can be used to perform complex separation tasks, thereby offering an alternative to expensive and time-consuming methods currently in use.  相似文献   

4.
In this paper, an Eulerian-Lagrangian simulation was conducted to achieve optimal Expanded-Contracted Cavity Arrays microchannel. First, a new code was developed to solve the viscoelastic flow field, and then the particles were solved by adding appropriate forces to the OpenFOAM Lagrangian solver. This code was then validated for both Eulerian and Lagrangian models. Subsequently, the effect of different parameters such as flow rate, distance from the inlet, cavity depth and distance, and particle size were also studied to obtain the proper geometry for particle focusing. Finally, the selected channel was integrated with a straight channel to separate 4.8 and 13 μm particles. The results of current research can be used to find a proper design of an Expanded-Contracted Cavity Arrays channel to achieve precise focusing and efficient, continuous, and sheathless particle/cell separation, which is much worthy for applications such as high-speed cytometry, cell counting, sorting, and many biological applications.  相似文献   

5.
A computer simulation of a section of the interior region of a liquid chromatographic column is performed. The detailed fluid flow profile is provided from a microscopic calculation of low Reynolds number flow through a random packed bed of nonporous spherical particles. The fluid mechanical calculations are performed on a parallel processor computer utilizing the lattice Boltzmann technique. Convection, diffusion, and retention in this flow field are calculated using a stochastic-based algorithm. This computational scheme provides for the ability to reproduce the essential dynamics of the chromatographic process from the fundamental considerations of particle geometry, particle size, flow velocity, solute diffusion coefficient, and solute retention parameters when retention is utilized. The simulation data are fit to semiempirical models. The best agreement is found for the "coupling" model of Giddings and the four-parameter Knox model. These models are verified over a wide range of particle sizes and flow velocities at both low and high velocity. The simulations appear to capture the essential dynamics of the chromatographic flow process for non-dimensional flow velocities (Péclet number) less than 500. Since the same packing geometry is utilized for different particle size studies, the interpretation of the parameter estimates from these models can be extended to the physical column model. The simulations reported here agree very well with a number of experiments reported previously.  相似文献   

6.
Continuous dielectrophoretic size-based particle sorting   总被引:1,自引:0,他引:1  
Continuous-flow dielectrophoretic (DEP) particle separation based on size is demonstrated in a microfluidic device. Polystyrene microspheres suspended in a neutrally buoyant aqueous solution are used as model particles to study DEP induced by an array of slanted, planar, interdigitated electrodes inside of a soft-lithography microchannel. The E-field gradients from the slanted electrodes impart a net transverse force component on the particles that causes them to "ratchet" across the channel. Over the length of the device, larger particles are deflected more than smaller particles according to the balance of hydrodynamic drag and DEP forces. Consequently, a flow-focused particle suspension containing different-sized particles is fractionated as the beads flow and separate down the length of the device. The flow behavior of spherical particles is modeled, and the total transverse particle displacement in the microfluidic device predicts fourth-order size and voltage and second-order inverse flow rate dependences. The model is verified experimentally for a range of flow rates, particle sizes, and E-field strengths.  相似文献   

7.
This paper describes a simple microfluidic sorting system that can perform size profiling and continuous mass-dependent separation of particles through combined use of gravity (1 g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: (i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity and (ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (<1 min) and high-purity (>99.9%) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter <6 microm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid, real-time size monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool to separate colloids and particles for various analytical and preparative applications and may hold potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing.  相似文献   

8.
The cylindrical hydrocyclone has been increasingly used in coarse classification due to its reduced fine particle entrainment, but the loss of coarse particles to overflow remains an intractable problem. Based on the notion that the strong circulation flow caused by the flat bottom structure bears primary responsibility for the problem, this study designs eight unique bottom profiles to regulate the particle circulating flow and attempts to correlate particle circulation flow with classification performance. The effects of the bottom profile on flow field characteristics, particle spatial distribution, circulation flow rates, and grade efficiency are explored in detail using validated models in a Φ200 mm cylindrical hydrocyclone. The findings suggest that bottom profiles have the greatest effect on the axial velocity near the bottom and the grade efficiency of intermediate and coarse particles, while all unique designs have the potential to lower turbulence intensity. An ascending segment near the wall or a descending segment near the axis can help to mitigate the misplacement of coarse particles by reducing particle circulation flow without affecting the entrainment of fines appreciably. Additionally, two circles are found on each side of the cut plane, which is conducive to releasing coarse particles from the circulation flow. Regulation of particle circulation flow by adjusting bottom profile parameters can improve separation performance.  相似文献   

9.
We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II) chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm) were examined in two concentrations of MnCl2 (6 and 10%). The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.  相似文献   

10.
Precisely separating particles/cells with different sizes and physical properties has been an interest for point-of-care diagnostics and personalized treatment. Dielectrophoresis (DEP) is widely known as a powerful and non-invasive technique to separate particles and cells. This paper presents a comprehensive numerical investigation of particle/cell separation in circular microchannels using DEP. First, the geometrical parameters of the circular microchannel affecting DEP force are determined by performing an analytical solution. Then, by developing a solver in OpenFOAM, the effect of these parameters on particles deflection is investigated. According to the results, two different circular microchannels are presented to investigate the continuous separation of bio-particles (based on their physical properties) and polystyrene particles (based on their size). The results showed that a minimum voltage of 7, 9, and 12 V is required to achieve 100 % purity and separation efficiency for separating red blood cells from MDA-MB-231 cancer cells at the flow rate of 0.5, 1.0, and 1.5 µl/min, respectively. Also, the efficient separation of 5 and 10 µm polystyrene particles at the flow rate of 0.1 µl/min is possible only at the voltage of 9 V. The results of this numerical study can be useful for the fabrication of an optimal microdevice for the continuous DEP separation of particles and cells.  相似文献   

11.
Pamme N  Manz A 《Analytical chemistry》2004,76(24):7250-7256
The separation of magnetic microparticles was achieved by on-chip free-flow magnetophoresis. In continuous flow, magnetic particles were deflected from the direction of laminar flow by a perpendicular magnetic field depending on their magnetic susceptibility and size and on the flow rate. Magnetic particles could thus be separated from each other and from nonmagnetic materials. Magnetic and nonmagnetic particles were introduced into a microfluidic separation chamber, and their deflection was studied under the microscope. The magnetic particles were 2.0 and 4.5 microm in diameter with magnetic susceptibilities of 1.12 x 10(-4) and 1.6 x 10(-4) m(3) kg(-1), respectively. The 4.5-microm particles with the larger susceptibility were deflected further from the direction of laminar flow than the 2.0-microm magnetic particles. Nonmagnetic 6-microm polystyrene beads, however, were not deflected at all. Furthermore, agglomerates of magnetic particles were found to be deflected to a larger extent than single magnetic particles. The applied flow rate and the strength and gradient of the applied magnetic field were the key parameters in controlling the deflection. This separation method has a wide applicability since magnetic particles are commonly used in bioanalysis as a solid support material for antigens, antibodies, DNA, and even cells. Free-flow magnetophoretic separations could be hyphenated with other microfluidic devices for reaction and analysis steps to form a micro total analysis system.  相似文献   

12.
Simple shear flow over a porous plate consisting of a planar array of particles is studied as a model of flow over a membrane. The main objective is to compute the slip velocity defined with reference to the velocity profile far above the plate, and the drift velocity induced by the shear flow underneath the plate. The difference between these two velocities is shown to be proportional to the thickness of the plate. When the geometry of the particle array is anisotropic, the directions of the slip and drift velocity are generally different from the direction of the overpassing shear flow. An integral formulation is developed to describe flow over a plate consisting of a periodic lattice of particles with arbitrary shape, and integral representations for the velocity and pressure are developed in terms of the doubly-periodic Green's function of three-dimensional Stokes flow. Based on the integral representation, asymptotic expressions for the slip and drift velocity are derived to describe the limit where the particle size is small compared to the inter-particle separation, and numerical results are presented for spherical and spheroidal particles of arbitrary size. The asymptotic results are found to be accurate over an extended range of particle sizes. To study the limit of small plate porosity, the available solution for shear flow over a plane wall with a circular orifice is used to describe flow over a plate with a homogeneous distribution of circular perforations, and expressions for the slip and drift velocity are derived. Corresponding results are presented for axial and transverse shear now over a periodic array of cylinders arranged distributed in a plane. Streamline pattern illustrations confirm that a negative drift velocity is due to the onset of eddies between closely-spaced particles.  相似文献   

13.
Abstract

We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II) chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm) were examined in two concentrations of MnCl2 (6 and 10%). The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.  相似文献   

14.
Xuan X  Xu B  Li D 《Analytical chemistry》2005,77(14):4323-4328
Accelerated particle electrophoretic motions were visualized in converging-diverging microchannels on poly(dimethylsiloxane) chips. The accelerated particle electrophoretic separation is highly desirable in on-chip flow cytometry and high-speed electrophoresis. The effects of electric field, particle size, particle trajectory, and channel structure on the particle electrophoretic motion are examined. We find that the ratio of the particle velocity in the throat to that in the straight channel is significantly lower than their cross-sectional area ratio. This discrepancy may be attributed to the locally higher electric field around the two poles of a particle, as compared to other regions inside the microchannel. We also find that the particle velocity ratio is increased for smaller particles moving through symmetric converging-diverging channels under lower electric fields. These variations may be attributed to the negative dielectrophoretic force that is generated by the nonuniform electric field in the converging-diverging section. In addition, we find that particle trajectory has insignificant influences on the maximum velocity ratio obtained in the throat.  相似文献   

15.
This article presents analysis and optimization of a microfluidic particle filter that uses acoustic radiation forces to remove particles larger than a selected size by adjusting the driving conditions of the piezoelectric transducer (PZT). Operationally, the acoustic filter concentrates microparticles to the center of the microchannel, minimizing undesirable particle adsorption to the microchannel walls. Finite element models predict the complex two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. We compare these results with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes (0.5-5.0 microm in diameter). These results provide insight into the optimal operating conditions and show the efficacy of our device as a filter with an adjustable effective pore size. We demonstrate the separation of Saccharomyces cerevisiae from MS2 bacteriophage using our acoustic device. With optimized design of our microfluidic flow system, we achieved yields of greater than 90% for the MS2 with greater than 80% removal of the S. cerevisiae in this continuous-flow sample preparation device.  相似文献   

16.
Magnetic separation as a particle-particle or particle-fluid separation technique has been extended to be effective for particulates with the smallest known magnetic susceptibility. Most commonly found materials are diamagnetic but the effectiveness of high magnetic field gradient separators for even these very weakly magnetic materials makes it difficult to separate more magnetic species of particles from them. The selectivity of such separations has been improved by matrix design and by several separation techniques. Regular arrays of matrix wires can be arranged according to the calculated field profile to exclude regions of capture for magnetic particulates of positive or negative susceptibility. The magnetic field orientation with respect to the array provides control over the competition between magnetic capture forces and those of fluid flow. The size of particle depletion regions in model arrays depends on particle size and susceptibility and suggests a method of measurement of these even for submicron particulates.  相似文献   

17.
This paper presents a numerical investigation of solid separation in jigging device. Jigging is a gravity separation method commonly used by the minerals industry to separate coal, iron ore, diamonds and other minerals on the basis of particle size and/or density. Separation is recognised as being heavily dependent on fluid motion in the jig. This study explores the effects of the inlet time dependent velocity profile in relation to a wide criterion on jigging performance. Modelling of the liquid–solid system is performed through a combination of computational fluid dynamics (CFD) to simulate liquid flow and discrete element method (DEM) to resolve particle motion. The initial packing conditions consist of a binary-density particle system of 1130 particles each 1 cm in diameter. A range of jigging profiles have been implemented in mineral processing. In this study the sinusoidal pulsation profile is selected adopting variations in both amplitude and frequency. The performance of profile variants are compared in terms of solid flow patterns, separation kinetics, energy, and mean particle position. These quantitative comparisons demonstrate significant differences in the segregation rate, energy, and solid phenomena, helping find an alternative optimum operating setting for the system. In addition, boundaries of operation are found in terms of frequency and amplitude limits and the concentration mechanics are investigated in these regions.  相似文献   

18.
Lao AI  Trau D  Hsin IM 《Analytical chemistry》2002,74(20):5364-5369
Electric field flow fractionation (EFFF) is a powerful separation technique based on an electrical field perpendicular to a pressure-driven flow. Previous studies of microelectric field flow fractionation (micro-EFFF) indicate that separation performance was limited due to a weak effective electric field caused by polarization layers on the electrode surfaces. In this work, we report on a micro-EFFF device that uses a pulsed voltage scheme to overcome these limitations. The device was fabricated in indium tin oxide (ITO)-coated glass with ITO as electrodes. The effective electric field for pulsed voltage operation was found to be 50-fold stronger when compared with constant voltage operation. A strong influence of pulsed voltage frequency on nanoparticle retention times was observed. Using pulsed voltage, improved separation of polystyrene particles of different surface charge and particle size is demonstrated. Pulsed voltage also offers more parameters compared to the constant voltage mode, e.g., pulse frequency, duty cycle, and waveform to optimize the retention behavior of analytes.  相似文献   

19.
This paper demonstrates that our extended smoothed particle hydrodynamics (SPH) model can successfully simulate multiphase flow in a Humphrey spiral concentrator (HSC) with two phases: powder and water. The powder phase in the model was assumed to be a continuum, as the spacing between particles in this state is much smaller than the typical length scale of flow. Further investigation was conducted on the influences of various design factors of the HSC, including the descent angle and curvature profile of the trough, during the separation of a binary mineral particle mixture.The model was validated by comparing the simulated results with the experimental results of Loveday and Cilliers (1994) as well as those of a novel lab-scale-experiment using a miniature of the HSC. The proposed SPH model accurately simulated dusty liquid flow in the HSC in both cases with an acceptable degree of accuracy relative to the experimental results. These studies are expected to be useful in future optimizations of HSC design and operating conditions.  相似文献   

20.
An improved stochastic separated flow model for turbulent two-phase flow   总被引:1,自引:0,他引:1  
 An improved stochastic separated flow model is proposed to obtain reasonable statistical characteristics of a two-phase flow. Effects of the history of a particle and its current trajectory position on the mean-square fluctuating velocity of the dispersed phase are continuously considered in this model. Comparing with the conventional model, results using the improved model are more reasonable and can also be obtained more easily. Furthermore, the improved model requires less computational particles for simulating dispersed-phase turbulence at the beginning of the stochastic trajectory. In this paper, an application in turbulent two-phase flow of planar mixing layer is carried out. Numerical results including velocity, mean-square fluctuating velocity, particle number density and pdf of fluctuation velocity of dispersed phase are shown to compare well with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号