共查询到19条相似文献,搜索用时 62 毫秒
1.
一种精确检测语音端点的方法 总被引:1,自引:0,他引:1
端点检测是语音识别中的一项关键技术,端点检测的准确性对语音识别的性能有很大影响,特别是对端点检测比较敏感的语音识别算法。本文引用窗长动态变化的端点检测技术,并将传统的双门限端点检测算法和窗长动态改变的端点检测技术结合起来用于语音端点检测。大量实验表明这种技术可以比较精确的检测语音端点,特别是地检测语音的起始端点中有很大的优势。使用改进后的语音端点检测技术,可以有效地提高语音识别率。 相似文献
2.
3.
一种改进的检测语音端点的方法 总被引:8,自引:9,他引:8
在语音识别系统中产生错误识别的原因之一是端点检测有误差。针对短时过零率对噪声的存在非常敏感,本文引入一种判决门限,修正了传统过零率的计算。同时引入窗长动态改变的端点检测方法,并将两者有机的融合到传统的双门限端点检测算法中。试验表明这种算法可以比较精确的检测出语音端点,适合于对端点检测比较敏感的语音识别算法。使用改进后的语音端点检测方法,可以有效地提高语音识别率。 相似文献
4.
5.
针对基于短时能量和短时过零率的语音端点检测算法不能自适应环境,在低信噪比时性能较差问题,提出了一种新算法。该算法利用最小短时能量评估环境噪声,优化参数提取算法,提高了参数本身的抗噪能力和自适应能力,再通过参数融合有效平衡了音节之间的差异,放大了语音与噪声之间的差异,最后通过一个动态检测门限,实现了不同信噪比下的端点检测。 相似文献
6.
7.
8.
张梅 《计算机工程与应用》2012,48(16):133-135,167
为了提高语音端点检测的适应性和鲁棒性,提出一种基于小波分析和模糊神经网络的语音端点检测方法。利用小波变换得到语音信号的特征量,以这些特征量为模糊神经网络的输入进行运算,判断出该信号的类别。介绍了信号特征量的提取以及模糊神经网络的模型、学习算法等。实验表明,与传统的检测方法相比,所提出的方法有较好的适应性和鲁棒性,对不同信噪比的信号都有较好的检测能力。 相似文献
9.
10.
端点检测是语音识别系统的一个重要组成,尤其是在噪声环境中,其准确性对语音识别系统性能有直接影响。提出了一种基于小波子带倒谱系数(SBC)的语音信号端点检测方法,利用小波变换对频带进行尺度划分,采用小波子带倒谱能量检测语音端点。通过与MFCC的仿真对比以及大量实验分析,小波子带倒谱特征在语音端点检测中具有更好的识别性能。 相似文献
11.
语音端点检测是语音信号处理过程中的一个重要步骤,其准确性对语音信号处理有直接影响.传统的双门限语音端点检测技术,在纯净语音或高信噪比的情况下,语音端点判断准确,但低信噪比的情况下,端点识别率很低,出错率较高.为了提高低信噪比条件下语音端点检测的识别率,在传统双门限语音端点检测的基础上融合了语音增强,通过Matlab仿真实验,取得了较高的语音端点检测准确率. 相似文献
12.
提出基于短时能量和过零率的简化语音信号双门限端点检测算法,搭建Matlab的算法仿真平台,实验结果表明,基于短时能量和过零率的双门限端点检测算法在保证检测率的前提下,运算复杂度和运算量均优于倒谱、分形、加权门限端点检测方法。采用Verilog语言完成了该模块的设计和仿真,并成功应用于孤立词语音识别系统中。该语音识别系统采用定点数设计方式,语音信号的采样频率为8kHz,每次采样的数据为8bits,晶片内部稳定工作频率为20MHz。实验结果表明,在200个词源的条件下,平均可以达到90%以上的识别效果。 相似文献
13.
14.
字幕信息有助于观众对音视频内容进行理解,在音视频文件中起着不可或缺的作用.针对自动字幕生成系统的要求,提出了一种灵活、高效的语音端点检测算法,可以在复杂背景噪声的情况下,从连续的音频信号中提取语音端点.将短时能量、短时过零率、短时信息熵这3种基本音频参数进行结合,形成新的音频特征参数:短时能零熵(EZE-feature),在结合了音频信号时域特征和频域特征优点的同时,规避了它们各自的不足.在此基础上,还提出了一种环境自适应的语音端点判定算法,在端点检测过程中对背景噪声进行实时分析,并根据背景噪声的变化对短时能零熵参数进行调整.该语音端点检测算法已被成功应用于自动字幕生成系统中. 相似文献
15.
16.
语音端点检测是语音信号预处理的重要一步,其准确度对语音合成和语音识别系统的性能起着决定性的作用.根据共振峰谐波能量特征,提出一种采用图像处理技术处理语谱图的语音端点检测算法.首先去除了语谱图中的周期性干扰,然后进行滤噪与分割,最后利用高斯一阶差分滤波器提取共振峰和获取语音端点.实验结果表明,在不同信噪比的白噪声和多种突发性噪声环境下,与其他算法相比,该算法效果更好. 相似文献
17.
一种改进的基于频能比的端点检测算法 总被引:6,自引:0,他引:6
端点检测的不准确是造成语音识别错误的一个重要原因,根据元音和噪音信号频能比的差异,以及辅音信号的过零率特点,论文提出了一种改进的基于频能比的端点检测算法———MEPD-FER,实验表明该算法可以在有噪音存在的情况下快速准确地确定出语音信号的端点。 相似文献
18.