首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Crab shell for the removal of heavy metals from aqueous solution   总被引:12,自引:0,他引:12  
An HK  Park BY  Kim DS 《Water research》2001,35(15):3551-3556
The ability of crab shell to remove heavy metals from aqueous solution was evaluated by comparing with that of several sorbents (cation exchange resin, zeolite, granular activated carbon, powdered activated carbon). All experiments were conducted using several heavy metal ion solutions (Pb, Cd, Cu, Cr). The orders of heavy metal removal capacity and initial heavy metal removal rate were found as crab shell > cation exchange resin > zeolite > powdered activated carbon>granular activated carbon. Therefore, crab shell is satisfactory as a good biosorbent for the heavy metal removal. The study indicates that the removal of these heavy metals is selective, with Pb and Cr being removed in preference to Cd and Cu. The sorption equilibrium of heavy metal ions on sorbents was modeled on the applications of Langmuir and Freundlich.  相似文献   

2.
《Water research》1996,30(8):1851-1857
Experiments were conducted to investigate the ammonia, nitrite and nitrate removal from aqueous solution using ozonation and ion exchange. The operating variables of the combined ozonation and ion exchange processes include the pH, initial concentration of nitrogenous compounds and flow rate of aqueous solution. The effects of those variables on the removal efficiencies of the nitrogeneous compounds by ozonation, or ion exchange or both were explored. Ozonation was found able to completely convert nitrite to nitrate. However its capability of ammonia removal is much limited. The anionic and cationic ion exchange resins were able to efficiently remove nitrate and residual ammonia. An optimal operating range of OH for ammonia removal by the combined ozonation and ion exchange was obtained. However, removal of nitrite and/or nitrate by combined ozonation and ion exchange was found to be relatively insensitive to pH. It was observed that the combined process is capable of efficiently maintaining the nitrogeneous compounds in the aqueous solution at very low concentration levels.  相似文献   

3.
An uptake of zinc (Zn), copper (Cu), and lead (Pb) from aqueous solutions by ion exchange on natural zeolitic tuff has been studied. The Croatian zeolite clinoptilolite from the Donje Jesenje deposit has been used as a natural ion exchanger. The efficiency of removal is higher for Pb and Cu than for Zn ions. Measured concentrations of Si in the liquid phase identify the detachment of the aluminosilicate structure during ion exchange in the presence of H(+) and OH(-) ions. The adsorption isotherm equations; Langmuir-Freundlich, Redlich-Petersen, Toth, Dubinin-Radushkevich, modified Dubinin-Radushkevich, and Lineweawer-Burk were derived from the basic empirical equations, and used for calculation of ion exchange parameters. The best fitting of experimental results to the proposed isotherms was observed in models that assume that ionic species bind first at energetically most favorable sites, with multi-layer adsorption taking place subsequently.  相似文献   

4.
Chromium(VI) [Cr(VI)] is adsorbed as HCrO4 on iron(III) hydroxide at pH below 8.5. The Cr(VI) adsorption is suppressed by the presence of other anions such as SO2−4 and SCN, and enhanced by the presence of metal ions such as Cd(II) and Pb(II). The suppression is due to the competitive adsorption of other anions, depending upon the stability of their iron complexes. The enhancement is probably due to the increase in adsorption sites as a result of coprecipitation of metal ion with iron(III) hydroxide.  相似文献   

5.
The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals.  相似文献   

6.
Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter > 0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction < 0.45 μm were considered as dissolved.  相似文献   

7.
In the present study ion exchange of Pb2+, Cu2+, Fe3+ and Cr3+ on natural clinoptilolite is examined at 27 +/- 1 degree C and initial concentration of 10 meq/dm3. Equilibrium is favorable for Pb2+, unfavorable for Cu2+ and sigmoid for Cr3+ and Fe3+. Selectivity series deduced from equilibrium isotherms is Pb2+ > Cr3+ > Fe3+ > Cu2+, while when maximum exchange levels (MELs) are considered, selectivity series is Pb2+ > Cr3+ approximately = Cu2+ > or = Fe3+. Cu2+ manifests the higher value of diffusion coefficient in the clinoptilolite particles among the metals studied, equal to 1.40 x 10(-9) cm2/s. According to the fixed bed experiments the upflow rate (5-15 Bed Volumes (BV)) is influencing the breakthrough point for all metals studied. The breakthrough point varies between 12.3 BV for Pb2+ and 1.18 for Cu2+. Flow rate is also influencing the operating capacity, giving values between 0.433 meq/g(clinoptilolite) for Pb2+ and 0.053 for Fe3+. Breakthrough point values confirm the selectivity order deduced from the equilibrium isotherms, while operating capacity values confirm the selectivity order deduced from MEL experiments.  相似文献   

8.
Yujiang Li  Baoyu Gao  Tao Wu 《Water research》2009,43(12):3067-985
A series of sols consisting of aluminum magnesium mixed hydroxide (AMH) nanoparticles with various Mg/Al molar ratios were prepared by coprecipitation. The use of AMH as adsorbent to remove Cr(VI) from aqueous solution was investigated. Adsorption experiments were carried out as a function of the Mg/Al molar ratio, pH, contact time, concentration of Cr(VI) and temperature. It was found that AMH with Mg/Al molar ratio 3 has the largest adsorption efficiency due to the smallest average particle diameter and the highest zeta potential; AMH was particularly effective for the Cr(VI) removal in a pH range from acid to slightly alkaline, even though the most effective pH range was between 2.5 and 5.0. The adsorption of Cr(VI) on AMH reached equilibrium within 150 min. The saturated adsorption capacities of AMH for Cr(VI) were 105.3-112.0 mg/g at 20-40 °C. The interaction between the surface sites of AMH and the Cr(VI) ions may be a combination of both anion exchange and surface complexation. The pseudo-second-order model best described the adsorption kinetics of Cr(VI) onto AMH. The results showed that AMH can be used as a new adsorbent for Cr(VI) removal which has higher adsorption capacity and faster adsorption rate at pH values close to that at which pollutants are usually found in the environment.  相似文献   

9.
Deng S  Bai R 《Water research》2004,38(9):2423-2431
Aminated polyacrylonitrile fibers (APANFs) were prepared and used as an adsorbent in a series of batch adsorption experiments for the removal of Cr(III) and Cr(VI) species from aqueous solutions of different pH values. The results show that significant amounts of Cr(III) or Cr(VI) species can be adsorbed by the APANFs, although the adsorption performances was greatly dependent upon the solution pH values. In general, the amounts of adsorption for Cr(III) species increased whereas that for Cr(VI) decreased with the increase of the solution pH values, which suggests that different adsorption mechanisms dominated the removal of Cr(III) or Cr(VI) species on the APANFs. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed that the adsorption of Cr(III) species on the APANFs was largely attributed to the formation of surface complexes between the nitrogen atoms on the APANFs and the Cr(III) species adsorbed, but the adsorption of Cr(VI) species on the APANFs was more likely effected through the formation of hydrogen bonds at high solution pH values or through both electrostatic attraction and surface complexation at low solution pH values. It was found that the Cr(VI)-adsorbed APANFs can be effectively regenerated in a basic solution and be reused almost without any loss of the adsorption capacity, while the Cr(III)-adsorbed APANFs needed to be regenerated in an acidic solution and the regeneration appeared to be less effective.  相似文献   

10.
《Urban Water Journal》2013,10(2):69-70
Retention/detention basins are commonly used to remediate runoff from road surfaces in an attempt to remove contaminants before these materials enter adjacent waterways. However, the efficiency of such devices in removing contaminants is not well known, especially for Australian conditions. The efficiency of a retention/detention device adjacent to a major motorway in Sydney (Australia) was assessed for total suspended solids (TSS), a suite of trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn), nutrients (TP, TKN, NOx, TN) and faecal coliforms. The mean removal efficiency of Cu, Pb, Mn and Zn was 23, 41, 43 and 41%, respectively, whereas the mean reduction in Cr, Fe and Ni concentrations was only 0, 3 and 1%, respectively. TSS in stormwater entering the retention/detention basin was highly variable resulting in large variations in removal efficiencies (range: ?12 to 93%; mean: 40%). The mean removal efficiency of Kjeldahl nitrogen (TKN) and total nitrogen (TN) was high (56 and 28%, respectively) in contrast to total NOx and total phosphorus (TP) (?42 and ?5%, respectively). Faecal coliform was low to very low (<5000 cfu/100 ml) and removal efficiency was 16 to 68%. Possible leaching of fine terrigenous particles from the gravel bed of the retention/detention basin may have contributed to the increase in Cr, Fe and Ni concentrations in effluent stormwater.  相似文献   

11.
The interactions of co-present Cr(VI) and As(V), and the influences of humic acid and bicarbonate in the process of Cr(VI) and As(V) removal by Fe0 were investigated in a batch setting using simulated groundwater with 5 mM NaCl, 1 mM Na2SO4, and 0.8 mM CaCl2 as background electrolytes at an initial pH value of 7. Cr(VI) and As(V) were observed to be subject to different impacts induced by co-existing As(V) or Cr(VI), humic acid and bicarbonate, originating from their distinct removal mechanisms by Fe0. Cr(VI) removal is a reduction-dominated process, whereas As(V) removal principally involves adsorption onto iron corrosion products. Experimental results showed that Cr(VI) removal was not affected by the presence of As(V) and humic acid. However, As(V) removal appeared to be inhibited by co-present Cr(VI). When the Cr(VI) concentration was 2, 5, and 10 mg/L, in the absence of humic acid and bicarbonate, As(V) removal rate constants were decreased by 27.9%, 49.0%, and 61.2%, respectively, which probably resulted from competition between Cr(VI) and As(V) for adsorption sites of the iron corrosion products. Furthermore, the presence of humic acid significantly varied As(V) removal kinetics by delaying the formation and aggregation of iron hydroxides due to the formation of soluble Fe-humate complexes and stably dispersed fine iron hydroxides colloids. In the presence of bicarbonate, both Cr(VI) and As(V) removal was increased and the inhibitory effect of Cr(VI) on As(V) removal was suppressed, resulting from the buffering effects and the promoted iron corrosion induced by bicarbonate, and the formation of CaCO3 in solution, which enhanced As(V) adsorption.  相似文献   

12.
The potential of using alumina, activated bauxsol-coated sand (ABCS), bark, bauxsol-coated sand (BCS), fly ash (FA), granulated activated carbon (GAC), granulated ferric hydroxide (GFH), iron oxide-coated sand (IOCS), natural zeolite (NZ), sand, and spinel (MgAl(2)O(4)) as sorbents for removing heavy metals from stormwater are investigated in the present study. The ability of the sorbents to remove a mixture of As, Cd, Cr, Cu, Ni and Zn from synthetic stormwater samples were evaluated in batch tests at a starting pH of 6.5. The metal speciation and saturation data is obtained using the PHREEQ-C geochemical model and used to elucidate the sorption data. It is found that BCS, FA, and spinel have significantly higher affinity towards heavy metals mainly present as cationic or non-charged species (i.e. Cd, Cu, Ni and Zn) compared to those present as anionic species (i.e. As and Cr). However, IOCS, NZ and sand have higher affinity towards As and Cr, while alumina has equally high affinity to all tested heavy metals. The Freundlich isotherm model is found to fit the data in many cases, but ill fitted results are also observed, especially for FA, BCS and GAC, possibly due to leaching of some metals from the sorbents (i.e. for FA) and oversaturated conditions making precipitation the dominant removal mechanism over sorption in batches with high heavy metal concentrations and pH. Calculated sorption constants (i.e. K(d)) are used to compare the overall heavy metal removal efficiency of the sorbents, which in a decreasing order are found to be: alumina, BCS, GFH, FA, GAC, spinel, ABCS, IOCS, NZ, bark, and sand. These findings are significant for future development of secondary filters for removal of dissolved heavy metals from stormwater runoff under realistic competitive conditions in terms of initial heavy metal concentrations, pH and ionic strength.  相似文献   

13.
Kim SO  Moon SH  Kim KW  Yun ST 《Water research》2002,36(19):4765-4774
In order to remove toxic heavy metals from municipal wastewater sludges, the ex situ electrokinetic technique was studied at pilot scale. This study focused on the feasibility of the electrokinetic removal of heavy metals from sludge and the effectiveness of this technique on the variations of abiotic (physicochemical) and biotic (intracellular and extracellular) speciations of heavy metals using several analytical methods. Even though the sludge used was taken from a municipal wastewater treatment plant, the sludge contained relatively high concentrations of target metal contaminants (Cd = 6.8 mg/kg, Cr = 115.6 mg/kg, Cu = 338.7 mg/kg, and Pb = 62.8 mg/kg). The removal efficiencies of heavy metals were significantly dependent on their speciations in the sludge matrices. The electrokinetic removal efficiencies of abiotic heavy metals exceeded 70% for the mobile and weakly bound fractions, such as, the exchangeable and carbonate fractions and were lower than 35% for the strongly bound fractions, such as, the organic/sulfide and residual fractions. In the case of the biotic heavy metals, the removal efficiencies of the extracellular fractions were slightly higher than those of the intracellular fractions.  相似文献   

14.
Metal removal by biological solubilization in three strongly contaminated sediments was carried out in a two-liter stirred bioreactor. Biological treatment yielded metal removal efficiencies in the range of 11-30%, 43-57%, 60-79%, 61-90%, 18-21%, 0-10% for Pb, Cu, Zn, Cd, Ni and Cr, respectively. The treated sediments were then rinsed with a NaCl solution (0.5 M), resulting in an increase by nearly 47% in Pb removal for the three sediments, while for other metals (Cu, Zn, Cd, Ni, Cr), the NaCl rinse did not seem to allow any significant increase in metal solubilization. A standard procedure of sequential selective extraction (SSE) was applied to the sediments before and after each treatment. With regard to Pb, Zn and Cd, the carbonate bound fractions (2/3 sediments) represented 18-42% of metals prior to treatment, while the iron and manganese oxides bound fraction constituted 39-60% of metals for the three sediments. Between 90 and 100% of Pb, Zn and Cd removed by the process came from the fractions bound to carbonates and from those bound to Fe and Mn oxides. The organic matter and sulfide bound fractions contained 65-72% of total Cu present before treatment and the process removed, on average, 63% Cu present in this fraction. In contrast, Ni and Cr were found mainly in the residual fractions (50-80%). Finally, this biological treatment did not solubilize Cr appreciably, while removal of Ni mostly originated from the carbonate and Fe/Mn oxides fractions (70-80%).  相似文献   

15.
Aim of this study was to evaluate the feasibility of the use of clinoptilolite as a barrier material to eliminate heavy metals from roof runoff. The effect of chemical conditioning with 1 M NaCl solution upon the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite has been investigated. According to the batch experiments the modified clinoptilolite has up to 100% higher sorption capacity, regarding Zn than the natural material. The pre-treatment of clinoptilolite results in an acceleration of the ion exchange process up to 40% regarding zinc. In order to define the reasons of this behaviour, both materials, modified and natural, were analysed for: (i) chemical composition, (ii) density, (iii) pore size distribution and (iv) zeta potential. The clogging of the pores, the charge of the grain surface, the pH of the initial metal solution and the ion metal concentration are the factors which are mainly affecting the ion exchange capacity and the rate of zinc uptake by clinoptilolite.  相似文献   

16.
Shi LN  Zhang X  Chen ZL 《Water research》2011,45(2):886-892
Bentonite-supported nanoscale zero-valent iron (B-nZVI) was synthesized using liquid-phase reduction. The orthogonal method was used to evaluate the factors impacting Cr(VI) removal and this showed that the initial concentration of Cr(VI), pH, temperature, and B-nZVI loading were all importance factors. Characterization with scanning electron microscopy (SEM) validated the hypothesis that the presence of bentonite led to a decrease in aggregation of iron nanoparticles and a corresponding increase in the specific surface area (SSA) of the iron particles. B-nZVI with a 50% bentonite mass fraction had a SSA of 39.94 m2/g, while the SSA of nZVI and bentonite was 54.04 and 6.03 m2/g, respectively. X-ray diffraction (XRD) confirmed the existence of Fe0 before the reaction and the presence of Fe(II), Fe(III) and Cr(III) after the reaction. Batch experiments revealed that the removal of Cr (VI) using B-nZVI was consistent with pseudo first-order reaction kinetics. Finally, B-nZVI was used to remediate electroplating wastewater with removal efficiencies for Cr, Pb and Cu > 90%. Reuse of B-nZVI after washing with ethylenediaminetetraacetic acid (EDTA) solution was possible but the capacity of B-nZVI for Cr(VI) removal decreased by approximately 70%.  相似文献   

17.
Natural zeolites, known for their excellent sorption properties towards metal cations, are widely used for the purification of wastewaters. The selectivity of clinoptilolite, a common zeolite mineral, for Pb is known to be particularly high, whereas its selectivity for Cd is often lower. Extraordinarily high sorption capacities for soft metal cations were observed in the case of thiol-functionalized silica gels and clays. In order to enhance the zeolites' sorption capacity for Cd, we treated natural heteroionic and Na-clinoptilolite in aqueous suspensions with cysteamine and propylamine solutions and investigated the sorption of Cd and Pb to amine-modified zeolite by a series of batch experiments. Stability constants for amine sorption on all zeolite samples at room temperature and 50 degrees C were obtained. Partial dimerization of cysteamine explains the enhanced sorption of this compound. In contrast, amine treatment did not enhance the adsorption capacity or selectivity of the clinoptilolite towards Cd and Pb. Instead, the amounts of adsorbed heavy metals decreased stoichometrically with increasing sorption of cysteamine and propylamine. This reduction can be explained by the blockage of channels by amine molecules and revealed that the modification of zeolites with mercaptoamines does not enhance the sorption capacity of zeolite for Cd and Pb.  相似文献   

18.
Lead (II) removal from natural soils by enhanced electrokinetic remediation   总被引:1,自引:0,他引:1  
Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.  相似文献   

19.
An integral approach to study the mobility of chromium in compost is presented. The approach is based on batch pH dependence leaching tests and the analysis of the leachates for total chromium, chromium(VI) and complexes of chromium(III) with natural organic matter. As leachings are performed with no aggressive reagents (ultrapure water with added nitric acid or potassium hydroxide), the method can be considered a good approach to simulate natural scenarios. The analysis of leachates is complemented with the determination of total chromium and total Cr(VI) in the solid sample. Speciation analysis are done by high performance liquid chromatography with inductively coupled plasma mass spectrometry as detection technique; Cr(VI) is determined by ion chromatography, whereas Cr(III) complexes with natural organic matter by size exclusion chromatography. In the compost studied, Cr(VI) accounted for 6% of the total chromium in the solid, whereas no significant amounts of Cr(VI) were mobilized in the pH range studied (4-10). Chromium is mobilized as Cr(III) bound to organic matter, both to humic and fulvic acids, with an increasing contribution of humic acids at higher pHs.  相似文献   

20.
The paper has investigated the impact of water-soluble macromolecular polyelectrolytes on the ultra- and nanofiltration process of purification of waters polluted by U(VI) and Cr(VI). Derivatives of polyacrylamide—cationic and anionic Praestols were used as such compounds. The relationship between the degree of extraction of U(VI) and Cr(VI) and the pH and concentration of Praestols was found. It has been shown that when using the latter the maximum retention coefficient of U(VI) both by ultra- and nanofiltration membranes constituted 0.999; the maximum retention coefficient of Cr(VI) by the ultrafiltration membrane—0.65  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号