首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well with experiments on granular packings. Contact numbers are also compared to caging numbers calculated for sphero-cylinders with arbitrary aspect-ratio. The caging number for rods arrested by uncorrelated point contacts asymptotes towards at high aspect ratio, strikingly close to the experimental contact number for thin rods. These and other findings confirm that thin-rod packings are dominated by local arrest in the form of truly random neighbor cages. The ideal packing law derived for random rod–rod contacts, supplemented with a calculation for the average contact number, explains both absolute value and aspect-ratio dependence of the packing density of randomly oriented thin rods.  相似文献   

2.
We examine numerically the density relaxation of frictional hard disks in two dimensions (2D), subjected to vertical shaking. Dynamical recompression of the packing under the action of gravity is based on an efficient event-driven molecular-dynamics algorithm. To quantify the changes in the internal structure of packing during the compaction, we use the Voronoï tessellation and a certain shape factor which is a clear indicator of the presence of different domains in the packing. It is found that the narrowing of the probability distribution of the shape factor during the compaction is in accordance with the fact that the packings of monodisperse hard disks spontaneously assemble into regions of local crystalline order. An interpretation of the memory effects observed for a sudden perturbation of the tapping intensity is provided by the analysis the accompanying transformations of disk packings at a “microscopic” level. In addition, we investigate the distributions of the shape factor in a 2D granular system of metallic disks experimentally, and compare them with the simulation results.  相似文献   

3.
In this study, the discrete element method was used to examine the structural properties and geometric anisotropy of polydisperse granular packings with discrete uniform particle size distributions. Confined uniaxial compression was applied to granular mixtures with different particle size fractions. The particle size fraction (class) was defined as the fraction of the sample composed of particles with a certain size. The threshold value of number of particle size fractions (i.e., the value above which structural properties of assemblies remain constant) was determined. The effect of heterogeneity in particle size on the critical value of number of particle size fractions was investigated for packings with different ratios between diameters of the largest and smallest grains. The threshold number of particle size classes decreased from five to three as the diameter ratio between the largest and smallest grains increased. Regardless of the diameter ratio, the critical number of particle size fractions (above which the packing density and coordination number of the granular mixtures remained constant) was determined to be five. The study has also shown an increase in packing density of binary mixtures with particle size ratio increasing up to 2.5, which was followed by decrease in density of mixtures with larger particle size ratios, which has not so far been reported in the literature.  相似文献   

4.
This paper is an extension of the recent work of Wi?cek (Granul Matter 18:42, 2016), wherein geometrical parameters of binary granular mixtures with various particle size ratio and contribution of the particle size fractions were investigated. In this study, a micromechanics of binary mixtures with various ratio of the diameter of small and large spheres and contribution of small particles was analyzed using discrete element simulations of confined uniaxial compression. The study addressed contact normal orientation distributions, global and partial contact force distributions and pressure distribution in packings of frictional spheres. Additionally, the effect of particle size ratio and contribution of particle size fractions on energy dissipation in granular mixtures was investigated. The particle size ratio in binary packings was chosen to prevent small particles from percolating through bedding. The bimodality of mixtures was found to have a strong effect on distribution of contact normal orientation and distribution of normal contact forces in binary mixtures. Stress transfer in binary packing was also determined by both, particle size ratio and volume fraction of small particles. Dissipation of energy was higher in mixtures with higher particle size ratios and decreased with increasing contribution of small spheres in system.  相似文献   

5.
This article describes the recent developments in the computer modeling of packing of complex-shaped particles and prediction of physical properties of the structures represented by the packing. The computer model DigiPac is capable of packing particles of any shapes and sizes in a container of arbitrary geometry. The ability to predict the packing structure of real particle shapes and to compute directly some structure-dependent physical properties such as liquid permeability, mechanical strength/stability, compaction and sintering, and dissolution and leaching is obviously highly desirable and has significant potential in industrial applications. Examples are presented relating to the packing of bulk and granular materials.  相似文献   

6.
This article describes the recent developments in the computer modeling of packing of complex-shaped particles and prediction of physical properties of the structures represented by the packing. The computer model DigiPac is capable of packing particles of any shapes and sizes in a container of arbitrary geometry. The ability to predict the packing structure of real particle shapes and to compute directly some structure-dependent physical properties such as liquid permeability, mechanical strength/stability, compaction and sintering, and dissolution and leaching is obviously highly desirable and has significant potential in industrial applications. Examples are presented relating to the packing of bulk and granular materials.  相似文献   

7.
The newly developed “void expansion method” allows for an efficient generation of porous packings of spherical particles over a wide range of volume fractions using the discrete element method. Particles are randomly placed under addition of much smaller “void-particles”. Then, the void-particle radius is increased repeatedly, thereby rearranging the structural particles until formation of a dense particle packing. The structural particles’ mean coordination number was used to characterize the evolving microstructures. At some void radius, a transition from an initially low to a higher mean coordination number is found, which was used to characterize the influence of the various simulation parameters. For structural and void-particle stiffnesses of the same order of magnitude, the transition is found at constant total volume fraction slightly below the random close packing limit. For decreasing void-particle stiffness the transition is shifted towards a smaller void-particle radius and becomes smoother.  相似文献   

8.
Soft-grain materials such as clays and other colloidal pastes share the common feature of being composed of grains that can undergo large deformations without rupture. For the simulation of such materials, we present two alternative methods: (1) an implicit formulation of the material point method (MPM), in which each grain is discretized as a collection of material points, and (2) the bonded particle model (BPM), in which each soft grain is modeled as an aggregate of rigid particles using the contact dynamics method. In the MPM, a linear elastic behavior is used for the grains. In order to allow the aggregates in the BPM to deform without breaking, we use long-range center-to-center attraction forces between the primary particles belonging to each grain together with steric repulsion at their contact points. We show that these interactions lead to a plastic behavior of the grains. Using both methods, we analyze the uniaxial compaction of 2D soft granular packings. This process is nonlinear and involves both grain rearrangements and large deformations. High packing fractions beyond the jamming state are reached as a result of grain shape change for both methods. We discuss the stress-strain and volume change behavior as well as the evolution of the connectivity of the grains. Similar textures are observed at large deformations although the BPM requires higher stress than the MPM to reach the same level of packing fraction.  相似文献   

9.
10.
We investigate, via granular dynamics simulations, the influence of particle size dispersity on the packing characteristics of uniaxially compacted pharmaceutical blends. We employ reduced models of representative pharmaceutical excipient blends comprised of one, two, four and six components of different size, where the grain size in each component is distinct. We investigate the particle dynamics and reorganization during the compaction phase after the blend has been poured into a tablet die. For small strains, we demonstrate the packing fraction of the powder blends to scale linearly with the axial strain. We do not observe any significant variation in the stress response of the blend with particle size dispersity at small strains, but the mixtures with greater particle size dispersity remain compactible up to higher strains than the less polydisperse mixtures.  相似文献   

11.
Plane wave propagation in periodic ordered granular media comprising of elastic spherical particles is investigated. The spheres are under zero precompression and are assumed to interact via the Hertzian contact potential. Various two- and three-dimensional granular structures such as hexagonal packing (2D and 3D), face-centered cubic and body-centered cubic packings are considered in the present study, with the plane impact either normal or oblique to the granular system. For the normal impact case, 1D chains equivalent to the 2D and 3D structures are obtained. A universal relation between the wavefront speed and the force amplitude is derived, valid for all the granular structures studied. In the angular impact case, the shear component of the amplitude of the particle velocity is found to initially decay exponentially and further in a series of linear regimes. By employing simpler models, semi-analytical predictions are obtained for the decay of shearing effect.  相似文献   

12.
This paper describes a methodology for prediction of powder packing densities which employs a new approach, designated as random sphere construction (RSC), for modelling the shape of irregular particles such as those produced by water atomization of iron. The approach involves modelling an irregular particle as a sphere which incorporates smaller corner spheres located randomly at its surface. The RSC modelling technique has been combined with a previously developed particle packing algorithm (the random build algorithm), to provide a computer simulation of irregular particle packings. Analysis of the simulation output data has allowed relationships to be established between the particle modelling parameters employed by the RSC algorithm, and the density of the simulated packings. One such parameter is η, which is the number of corner spheres per particle. A relationship was established between η (which was found to have a profound influence on packing density), and the fractional density of the packing, fd. Vision system techniques were used to measure the irregularity of the simulated particles, and this was also related to η. These two relationships were then combined to provide a plot of fractional density for a simulated packing against irregularity of the simulated particles. A comparison was made of these simulated packing densities and observed particle packing densities for irregular particles, and a correlation coefficient of 0.96 was obtained. This relatively good correlation indicates that the models developed are able to realistically simulate packing densities for irregular particles. There are a considerable number of potential applications for such a model in powder metallurgy (PM), process control. In combination with on-line particle image analysis, the model could be used to automatically predict powder densities from particle morphology.  相似文献   

13.
The narrow particle size distribution (PSD) of certain packing materials has been linked to a reduced eddy dispersion contribution to band broadening in chromatographic columns. It is unclear if the influence of the PSD acts mostly on the stage of the packing process or if a narrow PSD provides an additional, intrinsic advantage to the column performance. To investigate the latter proposition, we created narrow-PSD and wide-PSD random packings based on the experimental PSDs of sub-3 μm core-shell and sub-2 μm fully porous particles, respectively, as determined by scanning electron microscopy. Unconfined packings were computer-generated with a fixed packing protocol at bed porosities from random-close to random-loose packing to simulate fluid flow and advective-diffusive mass transport in the packings' interparticle void space. The comparison of wide-PSD, narrow-PSD, and monodisperse packings revealed no systematic differences in hydraulic permeability and only small differences in hydrodynamic dispersion, which originate from a slightly increased short-range interchannel contribution to eddy dispersion in wide-PSD packings. The demonstrated intrinsic influence of the PSD on dispersion in bulk packings is negligible compared with the influence of the bed porosity. Thus, the reduced eddy dispersion observed for experimental core-shell packings cannot be attributed to a narrow PSD per se.  相似文献   

14.
The purpose of this work was the direct numerical simulation of heat and fluid flow by granular mixing in a horizontal rotating kiln. To model particle behaviour and the heat and fluid flow in the drum, we solve the mass conservation, momentum and energy conservation equations directly on a fixed Eulerian grid for the whole domain including particles. At the same time the particle dynamics and their collisions are solved on a Lagrangian grid for each particle. To calculate the heat transfer inside the particles we use two models: the first is the direct solution of the energy conservation equation in the Lagrangian and Eulerian space, and the second is our so-called linear model that assumes homogeneous distribution of the temperature inside each particle. Numerical simulations showed that, if the thermal diffusivity of the gas phase significantly exceeds the same parameter of the particles, the linear model overpredicts the heating rate of the particles. The influence of the particle size and the angular velocity of the drum on the heating rates of particles is studied and discussed.  相似文献   

15.
In this paper, a new discrete elements generation method based on geometry is proposed to fill geometric domains with particles (disks or spheres). By generating particles each one with a random radius or with a radius calculated from the iteration to ensure no overlaps exist between particles and identifying unstable particles and changing them to stable ones, a dense and stable packing can be created. A partitioning particle radius interval method and a particle stability inspection and improvement method are introduced to guarantee the algorithm's success and the stability of the particles. Some packings were created to evaluate the performances of the new method. The results showed that the algorithm was very efficient and was able to create isotropic packings of low porosities and large coordinate numbers. The partitioning particle radius interval method improved the generation efficiency significantly and increased the packing densities. Through the comparisons with several existing methods proposed recently, the method proposed in this work is found to be more efficient and can fill geometric domains with the lowest porosities. In addition, the stability of the particles is guaranteed and no complex triangular or tetrahedral mesh is required in particle generation, thereby making the new method simpler. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Novel numerical algorithms are presented for the implementation of micro-scale boundary conditions of particle aggregates modelled with the discrete element method. The algorithms are based on a servo-control methodology, using a feedback principle comparable to that of algorithms commonly applied within control theory of dynamic systems. The boundary conditions are defined in accordance with the large deformation theory, and are imposed on a frame of boundary particles surrounding the interior granular micro-structure. Following the formulation presented in Miehe et al. (Int J Numer Methods Eng 83(8–9): 1206–1236, 2010), first three types of classical boundary conditions are considered, in accordance with (1) a homogeneous deformation and zero particle rotation (D), (2) a periodic particle displacement and rotation (P), and (3) a uniform particle force and free particle rotation (T). The algorithms can be straightforwardly combined with commercially available discrete element codes, thereby enabling the determination of the solution of boundary-value problems at the micro-scale only, or at multiple scales via a micro-to-macro coupling with a finite element model. The performance of the algorithms is tested by means of discrete element method simulations on regular monodisperse packings and irregular polydisperse packings composed of frictional particles, which were subjected to various loading paths. The simulations provide responses with the typical stiff and soft bounds for the (D) and (T) boundary conditions, respectively, and illustrate for the (P) boundary condition a relatively fast convergence of the apparent macroscopic properties under an increasing packing size. Finally, a homogenization framework is derived for the implementation of mixed (D)–(P)–(T) boundary conditions that satisfy the Hill–Mandel micro-heterogeneity condition on energy consistency at the micro- and macro-scales of the granular system. The numerical algorithm for the mixed boundary conditions is developed and tested for the case of an infinite layer subjected to a vertical compressive stress and a horizontal shear deformation, whereby the response computed for a layer of cohesive particles is compared against that for a layer of frictional particles.  相似文献   

17.
18.
19.
We simulate the process of compaction under vertical tapping for a two-dimensional system of particles deposited in a rectangular box. The particles consist in regular pentagons and our main objective is to analyze the novel behavior recently found for the packing fraction as a function of the tapping strength applied to the system (Vidales et al. in Phys Rev E 77:051305, 2008). We will relate the behavior of the number and type of arches, mean coordination number and number and type of contacts to the peculiar packing density increase found for increasing tapping strength. Finally, we present results of an annealed tapping on our packings to compare the results to the constant tapping protocol. All our results are compared with the analogous simulations carried out on disks.  相似文献   

20.
A simulation algorithm was developed for modeling the dense packing of large assemblies of particulate materials (in the order of millions). These assemblies represent the real aggregate systems of portland cement concrete. Two variations of the algorithm are proposed: sequential packing model and particle suspension model. A developed multicell packing procedure as well as fine adjustment of the algorithm's parameters were useful to optimize the computational resources (i.e., to realize the trade-off between the memory and packing time). Some options to speed up the algorithm and to pack very large volumes of spherical entities (up to 10 million) are discussed. The described procedure resulted in a quick method for packing of large assemblies of particulate materials. The influence of model variables on the degree of packing and the corresponding distribution of particles was analyzed. Based on the simulation results, different particle size distributions of particulate materials are correlated to their packing degree. The developed algorithm generates and visualizes dense packings corresponding to concrete aggregates. These packings show a good agreement with the standard requirements and available research data. The results of the research can be applied to the optimal proportioning of concrete mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号