首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this paper the effect of clinker and limestone quality on the air permeability, water absorption and pore structure of limestone cement concrete is investigated. Portland limestone cements of different fineness and limestone content have been produced by intergrinding clinker, gypsum and limestone. Two clinkers with different chemical composition, mineralogical composition and strength development as well as three limestones, differing by their calcite, dolomite, quartz and clay contents, have been used. It is shown that the clinker quality significantly affects the gas permeability and sorptivity of the limestone cement concrete. Limestone cements with high C3A and alkalis content seem to be more appropriate for improving the permeability properties of concrete. In addition, the effect of the limestone quality on the concrete permeability is not well established. The pore size distribution and more specifically the mean pore size affects the gas permeability and the sorptivity of the concrete. Finally it is concluded that, depending on the clinker quality and the cement fineness, limestone cement concrete, with an optimum limestone content, can give lower gas permeability and water absorption rate as compared with pure cement concrete.  相似文献   

2.
Steel slag has been used as supplementary cementitious materials or aggregates in concrete. However, the substitution levels of steel slag for Portland cement or natural aggregates were limited due to its low hydraulic property or latent volume instability. In this study, 60% of steel slag powders containing high free-CaO content, 20% of Portland cement and up to 20% of reactive magnesia and lime were mixed to prepare the binding blends. The binding blends were then used to cast concrete, in which up to 100% of natural aggregates (limestone and river sands) were replaced with steel slag aggregates. The concrete was exposed to carbonation curing with a concentration of 99.9% CO2 and a pressure of 0.10 MPa for different durations (1d, 3d, and 14d). The carbonation front, carbonate products, compressive strength, microstructure, and volume stability of the concrete were investigated. Results show that the compressive strength of the steel slag concrete after CO2 curing was significantly increased. The compressive strengths of concrete subjected to CO2 curing for 14d were up to five-fold greater than that of the corresponding concrete under conventional moist curing for 28d. This is attributed to the formation of calcium carbonates, leading to a microstructure densification of the concrete. Replacement of limestone and sand aggregates with steel slag aggregates also increased the compressive strengths of the concrete subjected to CO2 curing. In addition, the concrete pre-exposed to CO2 curing produced less expansion than the concrete pre-exposed to moist curing during the subsequent accelerated curing in 60 °C water. This study provides a potential approach to prepare concrete with low-carbon emissions via the accelerated carbonation of steel slag.  相似文献   

3.
The concrete industry is an important source of CO2 gas emissions. The cement used in the design of concrete is the result of a chemical process linked to the decarbonation of limestone conducted at high temperature and results in a significant release of carbon dioxide. Under the project EcoBéton (Green concrete) funded by the French National Research Agency (ANR), concrete mixtures have been designed with a low cement quantity, by replacing cement by mineral additions i.e., blast-furnace slag, fly ash or limestone fillers. Replacement of cement by other materials at high percentages generally lowers the early age strength of the resulting concrete. To cope with this problem, an optimisation method for mix design of concrete using Bolomey’s law has been used. Following the encouraging results obtained from mortar, a series of tests on concretes with various substitution percentages were carried out to validate the optimisation method.  相似文献   

4.
The building and construction sector is a major CO2 producer and climate change perspectives urged to reduce CO2 emissions. The impact of concrete buildings on environment is mainly due to clinker, which is the main material used all over the world to produce cement and which releases a bit less than 1 ton of CO2 per ton of clinker produced.In this study, we first evaluate if the medium term CO2 emission reduction objectives for the cement industry are realistic according to our current scientific and technologic knowledge. We consider two environmental strategies. The first one is the substitution of clinker by mineral additions in cement in order to reduce the environmental cost of the material for a given volume of material; the second one is the reduction of the concrete volume needed for a given construction process by enhancing the concrete performances. The impact on CO2 emissions of a combination of these options is also roughly evaluated. We show that medium term objectives can be reached although long term objectives will need further research developments. We moreover present here a first step towards mix-design methods associating environmental costs and performance requirements which could allow for a better balance between societal demand in terms of environment and technical building requirements.  相似文献   

5.
The concept of using limestone powder as supplementary materials to accelerate cement hydration has been explored widely. There have also been interests in using CO2 curing to enhance the early strength of concretes. This study investigated the effects of incorporating limestone powder on CO2 curing of cement-based materials. The results showed that using limestone powder to partially replace cement could significantly increase the CO2 curing degree of the cement pastes. QXRD analysis showed that calcite was the major reaction product, accompanied by amorphous calcium carbonate. The mass ratio of poorly crystallized calcium carbonate to highly crystallized calcium carbonate (DC/HC ratio) formed was affected by both the applied CO2 pressure and the use of limestone powder. At low pressure, incorporating limestone powder led to an increase in the DC/HC ratio. However, a reversed trend was observed in the case of high CO2 pressure.  相似文献   

6.
Fire-induced compositional changes lead to strength loss and even failure in cement and concrete. Calcium silicate hydrate (C–S–H) gel, the main product of cement hydration, dehydrates at 25–200 °C, while temperatures of 850–900 °C alter its structure. A Raman spectroscopic study of the amorphous and crystalline phases forming after CO2 laser radiation of cement mortar showed that C–S–H dehydration yielded tricalcium silicate at higher, and dicalcium silicate at lower, temperatures. Post-radiation variations were identified in the position of the band generated by Si–O bond stretching vibrations.  相似文献   

7.
The effect of carbonation curing on the mechanical properties and microstructure of concrete masonry units (CMU) with Portland limestone cement (PLC) as binder was examined. Slab samples, representing the web of a CMU, were initially cured at 25 °C and 50% relative humidity for durations up to 18 h. Carbonation was then carried out for 4 h in a chamber at a pressure of 0.1 MPa. Based on Portland limestone cement content, CO2 uptake of PLC concrete after 18 h of initial curing reached 18%. Carbonated and hydrated concretes showed comparable compressive strength at both early and late ages due to the 18-h initial curing. Carbonation reaction converted early hydration products to a crystalline microstructure and subsequent hydration transformed amorphous carbonates into more crystalline calcite. Portland limestone cement could replace Ordinary Portland Cement (OPC) in making equivalent CMUs which have shown similar carbon sequestration potential.  相似文献   

8.
The study aims to estimate a cement plant’s carbon dioxide (CO2) concentrations from individual sources as well as combined emissions from all the sources. Four main CO2 emission sources were considered: process from the calcination of limestone, the combustion of fossil fuel in the kilns, the power plant, and the dump trucks used for raw material transportation. An integrated modeling system comprised of the California PUFF and Weather Research and Forecasting was applied. The power plant and the stacks of three kilns were modeled as point sources, whereas the vehicular emissions were treated as a line source. In the first part of the study, modeling of the cement plant’s individual sources was carried out to predict CO2 at each receptor of the domain. In the second part, the CO2 concentrations of combined emissions from all of the plant’s sources were predicted. Individual modeling of each of the plant’s CO2 emission sources showed that the highest CO2 at each receptor of the domain resulted from the calcination process. In the case of combined modeling of all the cement plant’s sources, the predicted peak concentrations of CO2 were 357.19 and 36.11 mg/m3 for one-hour and 24-hour averaging periods, respectively.  相似文献   

9.
Energy consumption and CO2-emission of concrete can be reduced when cement is replaced by secondary materials such as residual products from other industries. However, for the design of such environmentally friendly concretes, predicting its performance is very important. In this article a cyclic design method is presented, which can predict the strength of a concrete mixture based on particle packing technology. In the procedure, the amount of water is estimated from the required workability and calculated packing density. After that, the strength of that mixture is predicted from packing density calculations and the amount of water in the mixture via the cement spacing factor. This cycle is repeated until the mixture composition does not have to be adjusted anymore to comply with the desired performance or strength class. With the presented cyclic design procedure cement contents can be decreased without changing concrete properties in a negative way, thereby saving up to 57 % of Portland cement and reducing CO2-emission with 25 %. This is shown by experimental results of ecological concrete mixtures tested on compressive strength, tensile strength, modulus of elasticity, shrinkage, creep and electrical resistance. The results confirmed that relationships between cube compressive strength, tensile splitting strength and modulus of elasticity correspond to those for normal concrete. The experimental program showed the possibility to use cube compressive strength as the governing design parameter in the cyclic design procedure for ecological concrete. Furthermore, it is shown how the cyclic design method can be used for defined-performance concrete design.  相似文献   

10.
In recent years, calcium sulfoaluminate-belite (CSAB) cement has been promoted as a sustainable alternative to Portland cement due to lower energy used and less CO2 emitted during production, while providing comparable performance. However, a potential problem facing the widespread adoption and production of CSAB cement is the cost and availability of raw materials and it is therefore desirable to find alternative raw materials to keep costs competitive. In this study, two CSAB cement clinkers with a similar target phase composition were synthesized from combinations of natural and waste materials (coal combustion residuals). The two CSAB cement clinkers were compared against a CSAB clinker made from reagent-grade chemicals, enabling examination of the effects of impurities on performance. Cements made from the clinkers were examined for hydration rate, hydration product formation, dimensional stability, and compressive strength.  相似文献   

11.
In this work the effect of mineral admixtures on the thaumasite form of sulfate attack in limestone cement concrete is studied. Additionally, the effect of the type of sand (calcareous or siliceous) and the storage temperature is investigated. Limestone cement, containing 15% limestone, was used. Concrete specimens were prepared by replacing a part of cement with the studied minerals. The specimens were immersed in a 1.8% MgSO4 solution and stored at 5 °C and 25 °C for 3 years. A well designed concrete made with limestone cement and fly ash, blastfurnace slag or metakaolin seems to have the ability to withstand thaumasite form of sulfate attack. The addition of natural pozzolana presented only a limited improvement of concrete’s sulfate resistance. The type of the sand and its cohesion with the cement paste has a remarkable effect on the performance of concrete at low temperature. Finally, no damage was observed in the specimens exposed to sulfate solution at 25 °C.  相似文献   

12.
The paper describes the physicochemical processes of concrete carbonation and presents a simple mathematical model for the evolution of carbonation in time, applicable under constant relative humidity higher than 50%. The model is based on fundamental principles of chemical reaction engineering, and uses as parameters the ambient concentration of CO2, the molar concentratrations of the carbonatable constituents, Ca(OH)2 and CSH, in the concrete volume, and the effective diffusivity of CO2 in carbonated concrete. The latter is given by an empirical function of the porosity of hardened cement paste and of relative humidity, derived from laboratory diffusion tests. The validity of the model for OPC or pozzolanic cement concretes and mortars is demonstrated by comparison of its predictions with accelerated carbonation test results obtained in an environment of controlled CO2 concentration, humidity and temperature. The mathematical model is extended to cover the case of carbonation of the coating-concrete system, for concrete coated with a cement-lime mortar finish, applied either almost immediately after the end of concrete curing or with a delay of a certain time. Parametric studies are performed to show how the evolution of carbonation depth with time is affected by cement and concrete composition (water/cement or aggregate/cement ratio, percentage OPC or aggregate replacement by a pozzolan), environmental factors (relative humidity, ambient concentration of CO2), the presence and the time of application of a lime-cement mortar coating and its composition (water/cement, aggregate/cement and lime/cement ratios of the mortar, percentage OPC or aggregate replacement by a pozzolan).  相似文献   

13.
In order to assess the potential CO2 capture ability of recycled concrete aggregates (RCAs) subjected to accelerated carbonation, an empirical prediction model has been developed in relation to carbonation conditions and the characteristics of RCAs. In this study, two sources of RCAs were used: RCAs from a designed concrete mixture and RCAs obtained from crushing of old laboratory concrete cubes. Two types of carbonation approaches were employed: (A) pressurized carbonation in a chamber with 100% CO2 concentration and (B) flow-through carbonation at ambient pressure with different CO2 concentrations. Four groups of RCAs particles with sizes of 20–10, 5–10, 2.36–5 and <2.36 mm were then tested and evaluated. It was found that a moderate relative humidity, a CO2 concentration higher than 10%, a slight positive pressure or a gas flow rate of >5 L/min were optimal to accelerate the RCAs carbonation. Moreover, the CO2 uptake of fine RCAs particles was faster than that of large RCAs particles. The developed model was able to predict the CO2 uptake in relation to relative humidity, particle size, carbonation duration and cement content of the RCA under the tested carbonation conditions.  相似文献   

14.
The concrete industry is known to leave an enormous environmental footprint on Planet Earth. First, there are the sheer volumes of material needed to produce the billions of tons of concrete worldwide each year. Then there are the CO2 emissions caused during the production of Portland cement. Together with the energy requirements, water consumption and generation of construction and demolition waste, these factors contribute to the general appearance that concrete is not particularly environmentally friendly or compatible with the demands of sustainable development.This paper summarizes recent developments to improve the situation. Foremost is the increasing use of cementitious materials that can serve as partial substitutes for Portland cement, in particular those materials that are by-products of industrial processes, such as fly ash and ground granulated blast furnace slag. But also the substitution of various recycled materials for aggregate has made significant progress worldwide, thereby reducing the need to quarry virgin aggregates. The most important ones among these are recycled concrete aggregate, post-consumer glass, scrap tires, plastics, and by-products of the paper and other industries.  相似文献   

15.
In order to reduce energy consumption and CO2 emission, and increase production, cement manufacturers are blending or inter-grinding mineral additives such as slag, natural pozzolana, and limestone. This paper reports on the results of an experimental study on the production of self-compacting concrete (SCC) produced with portland cement (PC), portland pozzolana (PPC) and portland limestone (PLC) blended cements. Moreover, the effect of different replacement levels (0–45%) of ground granulated blast furnace slag (GGBFS) with the PPC, PLC, and PC cements on fresh properties (such as slump flow diameter, T 500 slump flow time, V-funnel flow time, L-box height ratio, setting time, and viscosity) and hardened properties (such as compressive strength and ultrasonic pulse velocity) of self-compacting concretes are investigated. From the test results, it was found that it was possible to manufacture self-compacting concretes with PPC or PLC cements with comparable or superior performance to that of PC cement. Furthermore, the use of GGBFS in plain and especially blended cement self-compacting concrete production considerably enhanced the fresh characteristics of SCCs.  相似文献   

16.
Municipal solid waste incineration (MSWI) ash is used in part as raw materials for cement clinker production by taking advantage of the high contents of SiO2, Al2O3, and CaO. It is necessary for environmental reasons to establish a material utilization system for the incineration waste ash residue instead of disposing these ashes into landfill. The aim of this paper is to study the feasibility of replacing clinker raw materials by waste ash residue for cement clinker production. MSWI bottom ash and MSWI fly ash are the main types of ashes being evaluated. The ashes were mixed into raw mixture with different portions of ash residue to produce cement clinker in a laboratory furnace at approximately 1400°C. X-ray diffraction and X-ray florescence techniques were used to analyze the phase chemistry and chemical composition of clinkers in order to compare these ash-based clinkers with commercial Portland cement clinker.  相似文献   

17.
The cement industry is seeking alternative approaches to reduce the high energy and environmental costs of Portland cement manufacture. One such alternative is belite cement. In the present study clinkers with high (36–60%) belite contents were obtained at 1350 °C from raw mixes consisting of ceramic waste and the fluxing/mineralised pair CaF2/CaSO4. The factors found to affect the mineralogical composition and the clinker phase polymorphs obtained were the lime saturation factor (LSF), the presence of ceramic waste and the addition of CaF2 and CaSO4.The reactivity of these belite clinkers with water was analysed with isothermal conduction calorimetry. A statistical study was then conducted on the findings to determine the effect of each variable when the response signals were peak heat flow rate and the time needed to reach that peak. The statistical analysis identified the optimal experimental conditions to be a LSF of 90%, a CaSO4 content of 2.60%, and the absence of both ceramic waste and CaF2.  相似文献   

18.
There has been growing interests to reduce the environmental impact caused by greenhouse gas emissions from process plants through various energy conservation strategies. CO2 emissions are closely linked to energy generation, conversion, transmission and utilisation. Various studies on the design of energy-efficient processes, optimal mix of renewable energy and hybrid power system are driven to reduce reliance on fossil fuel as well as CO2 emissions reduction. This paper presents a systematic technique in the form of graphical visualisation tool for cost-effective CO2 emission reduction strategies in industry. The methodology is performed in four steps. The first step involves calculating the energy consumption of a process plant. This is followed by identification of potential strategies to reduce CO2 emissions using the CO2 management hierarchy as a guide. In the third step, the development of “Investment” versus “CO2 Reduction” (ICO2) plot is constructed to measure the optimal CO2 emission reductions achieved from the implementation of possible CO2 reduction strategies. The Systematic Hierarchical Approach for Resilient Process Screening (Wan Alwi and Manan in AIChE J 11:3981–3988, 2006) method is used in the fourth step via substitution or partial implementation of the various CO2 reduction options in order to meet the cost-effective emission reduction within the desired investment limit or payback period (PP). An illustrative case study on a palm oil refinery plant has been used to demonstrate the implementation of the method in reduction of CO2 emissions. The developed graphical tool provides an insight-based approach for systematic CO2 emission reduction in the palm oil refinery considering both heat and power energy sources. Result shows that 31.2 % reduction in CO2 emissions can be achieved with an investment of USD 38,212 and PP of 10 months based on the present energy prices in Malaysia.  相似文献   

19.
This study investigated the influence of natural pozzolana (opoka) additive on the hydration of Portland cement and the effects of pozzolana on sulfate attack of cement stone affected by chloride ions. In the samples, 25 % (by weight) of the Portland cement was replaced with pozzolana. The specimens were hardened for 28 days in water, and then one batch was soaked in a saturated NaCl solution and another in a 5 % Na2SO4 solution for 3 months at 20 °C. After being kept for 3 months in a saturated NaCl solution, samples were transferred to a 5 % Na2SO4 solution and kept under these conditions for 3 months. It was estimated that under normal conditions, pozzolana additive accelerated the hydration of calcium silicates and initiated the formation of CO3 2?–AFm; opoka also decreased the threshold pore diameter of hardened Portland cement paste. It was found that Cl ions penetrate to monosulfoaluminate, form Friedel’s salt, and release SO4 2? ions, which react with unaffected monosulfoaluminate and form extra ettringite; when samples were transferred to the 5 % Na2SO4 solution, a greater quantity of new ettringite was formed. Meanwhile, pozzolana additive reduced the penetration of chloride and sulfate ions into the structure of Portland cement hydrates and inhibited sulfate attack of cement stone treated in a saturated NaCl solution.  相似文献   

20.
Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy and causes less CO2 emission than Portland cement. Moreover, the use of limestone powder and BFS improves the properties of fresh and hardened concrete, such as workability and durability. Engineered cementitious composites (ECC) is a class of ultra ductile fiber reinforced cementitious composites, characterized by high ductility, tight crack width control and relatively low fiber content. The limestone powder and BFS are used to produce ECC in this research. The mix proportion is designed experimentally by adjusting the amount of limestone powder and BFS, accompanied by four-point bending test and uniaxial tensile test. This study results in an ECC mix proportion with the Portland cement content as low as 15% of powder by weight. This mixture, at 28 days, exhibits a high tensile strain capacity of 3.3%, a tight crack width of 57 μm and a moderate compressive strength of 38 MPa. In order to promote a wide use of ECC, it was tried to simplify the mixing of ECC with only two matrix materials, i.e. BFS cement and limestone powder, instead of three matrix materials. By replacing Portland cement and BFS in the aforementioned ECC mixture with BFS cement, the ECC with BFS cement and limestone powder exhibits a tensile strain capacity of 3.1%, a crack width of 76 μm and a compressive strength of 40 MPa after 28 days of curing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号