首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linear two-dimensional problem of hydroelastic waves reflected by a vertical wall is analysed. The fluid is of finite depth and is covered by an ice sheet. The fluid is assumed incompressible and inviscid. The ice sheet is assumed thin compared with both the water depth and wavelength of the incident wave. The deflection of the ice sheet is described by linear elastic plate theory, and the fluid flow by using the potential-flow model. The ice sheet extends infinitely and is clamped to the vertical-walled structure. The incident hydroelastic wave is regular. An analytic solution is found by integral-transform methods. The ice deflection, the vertical and horizontal forces acting on the wall and the bending stresses in the ice caused by the incident wave are determined. The forces on the wall are analysed in detail, and relevant physical parameters are varied for comparison. The phase shift between the incident and reflected wave amplitudes is found as part of the complete solution. It is shown that the ice clamping condition leads to a specific effect on the ice deflection.  相似文献   

2.
The interaction between incident surface water waves and floating elastic plate is studied. This paper considers the diffraction of plane incident waves on a floating flexible ring-shaped plate and its response to the incident waves. An analytic and numerical study of the hydroelastic behavior of the plate is presented. An integro-differential equation is derived for the problem and an algorithm of its numerical solution is proposed. The representation of the solution as a series of Hankel functions is the key ingredient of the approach. The problem is first formulated. The main integro-differential equation is derived on the basis of the Laplace equation and thin-plate theory. The free-surface elevation, plate deflection and Green’s function are expressed in polar coordinates as superpositions of Hankel and Bessel functions, respectively. These expressions are used in a further analysis of the integro-differential equation. The problem is solved for two cases of water depth infinite and finite. For the coefficients in the case of infinite depth a set of algebraic equations is obtained, yielding an approximate solution. Then a solution is obtained for the general and most interesting case of finite water depth analogously in the seventh section. The exact solution might be approximated by taking into account a finite number of the roots of the plate dispersion relation. Also, the influence of the plate’s motion on wave propagation in the open water field and within the gap of the ring is studied. Numerical results are presented for illustrative purposes.  相似文献   

3.
This paper addresses the need to know the unsteady forces and moments on an underwater vehicle in finite-depth water, at small enough submergences for it to be influenced by sea waves. The forces are those due to the waves themselves, as well as the radiation forces due to unsteady vehicle motions. Knowledge of these forces and the mass distribution of the vehicle allow solution of the equations of motion at a single-frequency. Since the theory is linear, any incident wave field can be decomposed into the sum of many individual single-frequency sinusoidal waves. The motions due to each frequency component can then be added together to obtain the total predicted vehicle motions. The wave forces are due to the undisturbed sea wave plus those due to the diffracted wave necessary to satisfy boundary conditions on the vehicle. The long-used strip theory for ships, with the inviscid-flow approximation, is modified for finite depth and inclusion of lift forces on the vehicle fins. The two-dimensional solutions for the forces on each strip are found by a different method than is commonly used for strip theory. This form of the theory is easier to deal with and requires much less computing time than a fully three-dimensional approach. Experiments are conducted and their results are compared with the theory. Excellent agreement is found between the theoretical and experimental wave forces, including the diffracted wave. It is shown that inclusion of the forces on the fins not only improves the theoretical wave forces, but also brings the results of theory for the radiation forces and moments due to vehicle motions much closer to the experimental values that the theory without inclusion of fin lift forces.  相似文献   

4.
Oblique wave interaction with rectangular porous structures of various configurations in two-layer fluid are analyzed in finite water depth. Wave characteristics within the porous structure are analyzed based on plane wave approximation. Oblique wave scattering by a porous structure of finite width and wave trapping by a porous structure near a wall are studied under small amplitude wave theory. The effectiveness of three types of porous structures—a semi-infinite porous structure, a finite porous structure backed by a rigid wall, and a porous structure with perforated front and rigid back walls—in reflecting and dissipating wave energy are analyzed. The reflection and transmission coefficients for waves in surface and internal modes and the hydrodynamic forces on porous structures of the aforementioned configurations are computed for various physical parameters in two-layer fluid. The eigenfunction expansion method is used to deal with waves past the porous structure in two-layer fluid assuming the associated eigenvalues are distinct. An alternate procedure based on the Green’s function technique is highlighted to deal with cases where the roots of the dispersion relation in the porous medium coalesce. Long wave equations are derived and the dispersion relation is compared with that derived based on small amplitude wave theory. The present study will be of significant importance in the design of various types of coastal structures used in the marine environment for the reflection and dissipation of wave energy.  相似文献   

5.
In this paper the recently developed semi-analytic method to solve the free-surface wave interaction with a thin elastic plate is extended to the case of a plate of finite thickness. The method used is based on the reformulation of the differential–integral equation for this problem. The thickness of the plate is chosen such that the elastic behavior of the plate can be described by means of thin-plate theory, while the water pressure at the plate is applied at finite depth. The water depth is finite.  相似文献   

6.
This paper presents an approximate method to compute the mean value, the mean square value and the spectrum of waves in water of finite depth taking into account the effect of wave breaking with or without the presence of current. It is assumed that there exists a linear and Gaussian ideal wave train whose spectrum is first obtained using the wave energy flux balance equation without considering wave breaking. The Miche wave breaking criterion for waves in finite water depth is used to limit the wave elevation and establish an expression for the breaking wave elevation in terms of the elevation and its second time derivative of the ideal waves. Simple expressions for the mean value, the mean square value and the spectrum are obtained. These results are applied to the case in which a deep water unidirectional wave train, propagating normally towards a straight shoreline over gently varying sea bottom of parallel and straight contours, encounters an adverse steady current whose velocity is assumed to be uniformly distributed with depth. Numerical results are obtained and presented in graphical form.  相似文献   

7.
在有限水深、同轴但半径大于或等于浮体半径的圆柱体障碍物地形条件下,基于特征函数展开法,推导了垂直放置的圆柱形浮体由于波的辐射和散射作用所表现的动力学和运动学特征表达式,涉及浮体做垂荡、横荡和横摇运动所产生的辐射势,以及在入射波的作用下,由于浮体固定不动而产生的散射势,并推导了激励力、附加质量和阻尼系数表达式。采用与同轴、同半径圆柱体障碍物地形上单浮体水动力学特性相比的方式和激励力计算两种方法验证了推导的表达式,最后分析了障碍物几何尺寸对浮体水动力学特性的特有影响。  相似文献   

8.
Summary A multiple scale perturbation method is developed to obtain asymptotic evolution equations for slowly varying wave train solutions to non-linear dispersive wave problems. The method appears to give results which are a generalization of Whitham's theory on one hand and a generalization of the ray theory on the other hand. First an application is given to a non-linear Klein-Gordon equation, then the method is applied to two-dimensional water waves on water of finite depth (Stokes waves).  相似文献   

9.
On the basis of linear water-wave theory, an explicit expression is presented for the reflection coefficient R ?? when a plane wave is obliquely incident upon a semi-infinite porous plate in water of finite depth. The expression, which correctly models the singularity in velocity at the edge of the plate, does not rely on knowledge of any of the complex-valued eigenvalues or corresponding vertical eigenfunctions in the region occupied by the plate. The solution R ?? is the asymptotic limit of the reflection coefficient R as a ?? ??, for a plate of finite length a bounded by a rigid vertical wall, and forms the basis of a rapidly convergent expansion for R over a wide range of values of a. The special case of normal incidence is relevant to the design of submerged wave absorbers in a narrow wave tank. Modifications necessary to account for a finite submerged porous plate in a fluid extending to infinity in both horizontal directions are discussed.  相似文献   

10.
Experimental verification of nondiffracting X waves   总被引:6,自引:0,他引:6  
The propagation of acoustic waves in isotropic/homogeneous media and electromagnetic waves in free space is governed by the isotropic/homogeneous (or free space) scalar wave equation. A zeroth-order acoustic X wave (axially symmetric) was experimentally produced with an acoustic annular array transducer. The generalized expression includes a term for the frequency response of the system and parameters for varying depth of field versus beam width of the resulting family of beams. Excellent agreement between theoretical predictions and experiment was obtained. An X wave of finite aperture driven with realizable (causal, finite energy) pulses is found to travel with a large depth of field (nondiffracting length).  相似文献   

11.
Several recent results on the regularity of streamlines beneath a rotational travelling wave, along with the wave profile itself, will be discussed. The survey includes the classical water wave problem in both finite and infinite depth, capillary waves and solitary waves as well. A common assumption in all models to be discussed is the absence of stagnation points.  相似文献   

12.
The reflection of fundamental acoustic waves propagating in a thin piezoelectric plate by a periodic array of conducting strips of finite thickness or grooves has been theoretically and experimentally investigated. The analysis has shown that electrical shorting and mass loading affect the relationship of neighboring region impedances in a contrary manner. In some cases, these effects are comparable, and there exists a certain strip thickness for each piezoactive fundamental plate mode at which the reflection coefficient can become zero. A high efficiency of grooved reflector for plate acoustic waves was theoretically revealed. Experimental results for mass loading and grooved reflections, which have been obtained for an SH/sub 0/ wave propagating in the Y-X lithium niobate plate, are in a good agreement with the theory. They show a high efficiency of such reflectors and confirm the validity of using a model based on an equivalent circuit for the analysis of their operation. Investigations indicate that nearly 100% reflection of the SH/sub 0/ wave in the lithium niobate plate can be obtained with the use of a mass loading reflector containing 10 silver strips of thickness d/h=0.08 or a grooved reflector containing eight grooves of depth d/h=0.25. Here h is the plate thickness and d is the reflector thickness or depth.  相似文献   

13.
The problem of surface water-wave scattering by two symmetric circular-arc-shaped thin plates submerged in deep water is investigated in this paper assuming linear theory. The problem is formulated in terms of hypersingular integral equations which are solved approximately using finite series involving Chebyshev polynomials of the second kind. The coefficients of the finite series are obtained numerically by a collocation method. Very accurate numerical estimates for the reflection and the transmission coefficients are then obtained. The numerical results are depicted graphically against the wave number for different arc lengths of the plates, the depth of their submergence and the separation length. Known results for a circular cylinder and horizontal straight plate are recovered.  相似文献   

14.
激光声表面波检测铝板表面凹痕的数值研究   总被引:1,自引:0,他引:1  
采用平面应变的有限元模型数值模拟了热弹机制下线型脉冲激光辐照金属铝板表面激发高频声表面波,及声表面波经过表面矩形凹痕时发生反射的过程.计算结果表明: 声表面波中的瑞利波经过表面凹痕时发生明显的反射,并产生两个相继出现且具有相同的传播速度的反射表面波成分;随着凹痕深度的增加,两个反射瑞利脉冲出现的时间间隔将增大;数值计算从理论的角度有力地证实了前一反射瑞利波产生于凹痕的顶端,而后者源于其底部的论断,从而为定量检测金属表面缺陷的深度提供了理论依据.  相似文献   

15.
An explicit solution is provided for the scattering of flexural gravity waves by a rigid vertical barrier submerged in an infinite depth of water. By applying recently developed mode-coupling relation for eigenfunctions, the mixed boundary value problem has been converted to solve dual integral equations with kernel consisting of trigonometric functions. And then complete analytical solutions are derived with an aid of singular integral equations whose solutions are bounded at the end points. The important hydrodynamical scattering quantities such as reflection and transmission coefficients associated with the flexural gravity wave scattering have been obtained analytically in terms of modified Bessel functions and Struve functions. It is observed that these quantities are sensitive to both combined as well as individual effect of plate thickness and barrier depth of submergence. Numerical results are computed and explained graphically for different parameters such as time period and non-dimensional wave length. Further, the effect of compressive force and plate thickness on the flexural gravity waves against a submerged vertical barrier is studied.  相似文献   

16.
K Venkataramana  Kenji Kawano 《Sadhana》1995,20(2-4):501-512
A study of dynamic response of offshore structures in random seas to inputs of earthquake ground motions is presented. Emphasis is placed on the evaluation of nonlinear hydrodynamic damping effects due to sea waves for the earthquake response. The structure is discretized using the finite element method. Sea waves are represented by Bretschneider’s power spectrum and the Morison equation defines the wave forcing function. Tajimi-Kanai’s power spectrum is used for the horizontal ground acceleration due to earthquakes. The governing equations of motion are obtained by the substructure method. Response analysis is carried out using the frequency-domain random-vibration approach. It is found that the hydrodynamic damping forces are higher in random seas than in still water and sea waves generally reduce the seismic response of offshore structures. Studies on the first passage probabilities of response indicate that small sea waves enhance the reliability of offshore structures against earthquakes forces.  相似文献   

17.
Surface gravity wave interaction with a floating and submerged elastic plate system is analyzed under the assumption of small-amplitude surface water wave theory and structural response. The plane progressive wave solution associated with the plate system is analyzed to understand the characteristics of the flexural gravity waves in different modes. Further, linearized long-wave equations associated with the wave interaction with the elastic plate system are derived. The dispersion relations are derived based on small-amplitude wave theory and shallow-water approximation and are compared to ensure the correctness of the mathematical formulation. To deal with various types of problems associated with gravity wave interaction with a floating and submerged flexible plate system, Fourier-type expansion formulae are derived in the cases of water of both finite and infinite depths in two dimensions. Certain characteristics of the eigensystems of the developed expansion formulae are derived. Source potentials for surface wave interaction with a floating flexible structure in the presence of a submerged flexible structure are derived and used in Green’s identity to obtain the expansion formulae for flexural gravity wavemaker problems in the presence of submerged flexible plates. The utility of the expansion formulae and associated orthogonal mode-coupling relations is demonstrated by investigating the diffraction of surface waves by floating and submerged flexible structures of two different configurations. The accuracy of the computational results is checked using appropriate energy relations. The present study is likely to provide fruitful solutions to problems associated with floating and submerged flexible plate systems of various configurations and geometries arising in ocean engineering and other branches of mathematical physics and engineering including acoustic structure interaction problems.  相似文献   

18.
The authors report families of generalized nondiffracting solutions of the free-space scalar wave equation, and specifically, a subset of these nondiffracting solutions, which are called X waves. These nondiffracting X waves can be almost exactly realized over a finite depth of field with finite apertures and by either broadband or bandlimited radiators. With a 25-mm diameter planar radiator, a zeroth-order broadband X wave will have about 2.5-mm lateral and 0.17-mm axial -6-dB beam widths with a -6-dB depth of field of about 171 mm. A zeroth-order bandlimited X wave was produced and measured in water by a 10 element, 50-mm diameter, 2.5-MHz PZT ceramic/polymer composite J (0) Bessel nondiffracting annular array transducer with -6-dB lateral and axial beam widths of about 4.7 mm and 0.65 mm, respectively, over a -6-dB depth of field of about 358 mm. Possible applications of X waves in acoustic imaging and electromagnetic energy transmission are discussed.  相似文献   

19.
Wave motion due to line, point and ring sources submerged in an inviscid fluid are analytically investigated. The initially quiescent fluid of finite depth, covered by a thin elastic plate or by an inertial surface with the capillary effect, is assumed to be incompressible and homogenous. The strengths of the sources are time-dependent. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The perturbed flow is decomposed into the regular and the singular components. An image system is introduced for the singular part to meet the boundary condition at the flat bottom. The solutions in integral form for the velocity potentials and the surface deflexions due to various singularities are obtained by means of a joint Laplace-Fourier transform. To analyze the dynamic characteristics of the flexural- and capillary-gravity waves due to unsteady disturbances, the asymptotic representations of the wave motion are explicitly derived for large time with a fixed distance-to-time ratio by virtue of the Stokes and Scorer methods of stationary phase. It is found that the generated waves consist of three wave systems, namely the steady-state gravity waves, the transient gravity waves and the transient flexural/capillary waves. The transient wave system observed depends on the moving speed of the observer in relation to the minimal and maximal group velocities. There exists a minimal depth of fluid for the possibility of the propagation of capillary-gravity waves on an inertial surface. Furthermore, the results for the pure gravity and capillary-gravity waves in a clean surface can also be recovered as the flexural and inertial parameters tend to zero.  相似文献   

20.
We present a solution for the interaction of normally incident linear waves with a submerged elastic plate of semi-infinite extent, where the water has finite depth. While the problem has been solved previously by the eigenfunction-matching method, the present study shows that this problem is also amenable to the more analytical, and extremely efficient, Wiener–Hopf (WH) and residue calculus (RC) methods. We also show that the WH and RC solutions are actually equivalent for problems of this type, a result which applies to many other problems in linear wave theory. (e.g., the much-studied floating elastic plate scattering problem, or acoustic wave propagation in a duct where one wall has an abrupt change in properties.) We present numerical results and a detailed convergence study, and discuss as well the scattering by a submerged rigid dock, particularly the radiation condition beneath the dock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号