首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the inverse scattering of objects embedded in a homogeneous elastic background. The medium is probed by ultrasonic sources, and the scattered fields are observed along a receiver array. The goal is to retrieve the shape, location, and constitutive parameters of the objects through an inversion procedure. The problem is formulated using a vector integral equation. As is well-known, this inverse scattering problem is nonlinear and ill-posed. In a realistic configuration, this nonlinear inverse scattering problem involves a large number of unknowns, hence the application of full nonlinear inversion approaches such as Gauss-Newton or nonlinear gradient methods might not be feasible, even with present-day computer power. Hence, in this study we use the so-called diagonalized contrast source inversion (DCSI) method in which the nonlinear problem is approximately transformed into a number of linear problems. We will show that, by using a three-step procedure, the nonlinear inverse problem can be handled at the cost of solving three constrained linear inverse problems. The robustness and efficiency of this approach is illustrated using a number of synthetic examples.  相似文献   

2.
We consider a Robin inverse problem associated with the Laplace equation, which is a severely ill-posed and nonlinear. We formulate the problem as a boundary integral equation, and introduce a functional of the Robin coefficient as a regularisation term. A conjugate gradient method is proposed for solving the consequent regularised nonlinear least squares problem. Numerical examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

3.
We continue our study of the inverse scattering problem for diffuse light. In contrast to our earlier work, in which we considered the linear inverse problem, we now consider the nonlinear problem. We obtain a solution to this problem in the form of a functional series expansion. The first term in this expansion is the pseudoinverse of the linearized forward-scattering operator and leads to the linear inversion formulas that we have reported previously. The higher-order terms represent nonlinear corrections to this result. We illustrate our results with computer simulations in model systems.  相似文献   

4.
We are concerned with the reconstruction of an unknown space-dependent rigidity coefficient in a wave equation. This problem is known as one of the inverse scattering problems. Based on a two-point Lie-group equation we develop a Lie-group adaptive method (LGAM) to solve this inverse scattering problem through iterations, which possesses a special character that by using onlytwo boundary conditions and two initial conditions, as those used in the direct problem, we can effectively reconstruct the unknown rigidity function by aself-adaption between the local in time differential governing equation and the global in time algebraic Lie-group equation. The accuracy and efficiency of the present LGAM are assessed by comparing the imaged results with some postulated exact solutions. By means of LGAM, it is quite versatile to handle the wave inverse scattering problem for the image of the rigidity coefficient without needing any extra information from the wave motion.  相似文献   

5.
In this paper, we consider an inverse rough surface scattering problem in near-field optical imaging. This problem is actually to reconstruct the scattering surface as well as its impedance coefficient from multifrequency near-field data, and can be reduced into an integral scheme by employing an integral representation. We solve this integral scheme by a non-linear integral equation method, and further develop a fast inversion algorithm for reconstructing both the rough surface and the impedance coefficient. Numerical experiments are presented to illustrate the effectiveness of the algorithm.  相似文献   

6.
ABSTRACT

We study the propagation of ultrashort pulses of width around sub-10 femtosecond in an inhomogeneous highly nonlinear single-mode fibre within the framework of a generalized higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms and spatially inhomogeneous coefficients. Additional effects to the cubic model include the distributed third-order dispersion, self-steepening, self-frequency shift due to stimulated Raman scattering, quintic nonKerr nonlinearity, derivative non-Kerr nonlinear terms, and gain or loss. The exact self-similar brightand dark-solitary-wave solutions of the governing equation are derived via a transformation connected with the constant-coefficient higher-order nonlinear Schrödinger equation with non-Kerr nonlinearity. The constraint relations among the optical fibre parameters for the existence of these self-similar structures are also discussed. Based on these exact solutions, we investigate the dynamical behaviours of self-similar localized pulses in a periodic distributed fibre system for different parameters.  相似文献   

7.
We study the amplitude modulation of a symmetric regularized long-wave equation with quartic nonlinearity through the use of the reductive perturbation method by introducing a new set of slow variables. The nonlinear Schr?dinger (NLS) equation with seventh order nonlinearity is obtained as the evolution equation for the lowest order term in the perturbation expansion. It is also shown that the NLS equation with seventh order nonlinearity assumes an envelope type of solitary wave solution.  相似文献   

8.
H. -H. Dai 《Acta Mechanica》1998,127(1-4):193-207
Summary In this paper, we study nonlinear axisymmetric waves in a circular cylindrical rod composed of a compressible Mooney-Rivlin material. The aim is to derive simplified model equations in the far field which include both nonlinearity and dispersion. We consider disturbances in an initially pre-stressed rod. For long finite-amplitude waves, the Korteweg-de Vries (KdV) equation arises as the model equation. However, in a critical case, the coefficient of the dispersive term in the KdV equation vanishes. As a result, the dispersion cannot balance the nonlinearity. On the other hand, the latter has the tendency to make the wave profile steeper and steeper. The attention is then focused on finite-length and finite-amplitude waves. A new nonlinear dispersive equation which includes extra nonlinear terms involving second-order and third-order derivatives is derived as the model equation. In the case that the rod is composed of a compressible neo-Hookean material, that equation is further reduced to the Benjamin-Bona-Mahony (BBM) equation, which is known as an alternative to the KdV equation for modelling long finite-amplitude waves. To the author's knowledge, it is the first time that the BBM equation is found to arise as a model equation for finite-length and finite-amplitude waves.  相似文献   

9.
The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.  相似文献   

10.
When the product of contrast and size of an object, which is to be reconstructed by using the ultrasound inverse scattering tomography algorithm, is large, it is well known that those algorithms fail to converge to a unique global minimum. In order to solve this well known and difficult convergence problem, in this paper we present a new method, which converges to the true solution, for obtaining the scattering potential without using the Born or Rytov approximation. This method converts the nonlinear nature of the problem into a linear one. Through computer simulations we will show the validity of the new approach for high contrast two-dimensional scattering objects which are insonified by an incident ultrasound plane wave. Numerical results show that the reconstruction error is very small for circularly symmetric two-dimensional cylindrical objects whose refractive indices range from small to even sufficiently large values for which the previous inverse scattering algorithms fail to converge.  相似文献   

11.
Two methods of solving the nonlinear two-dimensional electromagnetic inverse scattering problem in the time domain are considered. These are the Born iterative method and the method originally proposed by Tarantola for the seismic reflection inverse problems. The former is based on Born-type iterations on an integral equation, whereby at each iteration the problem is linearized, and its solution is found via a regularized optimization. The latter also uses an iterative method to solve the nonlinear system of equations. Although it linearizes the problem at each stage as well, no optimization is carried out at each iteration; rather the problem as a whole is posed as a (regularized) optimization. Each method is described briefly and its computational complexity is analyzed. Tarantola's method is shown to have a lower numerical complexity compared to the Born iterative method for each iteration, but in the examples considered, required more iterations to converge. Both methods perform well when inverting a smooth profile; however, the Born iterative method gave better results in resolving localized point scatterers.  相似文献   

12.
We study soliton solutions to a generalized Korteweg–de Vries (KdV) equation with a saturated nonlinearity, following the line of inquiry of Marzuola, Raynor and Simpson for the nonlinear Schrödinger equation (NLS). KdV with such a nonlinearity is known to possess a minimal-mass soliton. We consider a small perturbation of a minimal-mass soliton and numerically shadow a system of ordinary differential equation (ODEs), which models the behaviour of the perturbation for short times. This connects nicely to analytic works of Comech, Cuccagna and Pelinovsky as well as of Grimshaw and Pelinovsky. These ODEs form a simple dynamical system with a single unstable hyperbolic fixed point with two possible dynamical outcomes. A particular feature of the dynamics is that they are non-oscillatory. This distinguishes the KdV problem from the analogous NLS one.  相似文献   

13.
We consider the problem of imaging the optical properties of a highly scattering medium probed by diffuse light. An analytic solution to this problem is derived from the singular value decomposition of the forward-scattering operator, which leads to explicit inversion formulas for the inverse scattering problem with diffusing waves. Computer simulations are used to illustrate these results in model systems.  相似文献   

14.
线性抽样方法是考虑一个第一类线性积分方程中的参数从区域内部趋近散射区域边界时,该方程的解趋近于无穷大。本文在此基础上就Dirichlet边界条件的声波反散射问题,利用积分方程理论严格证明了线性抽样方法对其的可用性,具体数值例子表明该方法是有效的。  相似文献   

15.
利用变形Born迭代方法,建立了超声衍射重建算法。在迭代过程中,为了解决超声逆散射问题中的非线性性,需要反复地求解前向散射方程和逆散射方程,以达到全场和未知函数的近似,较好地重建物体内部的断层图象。由于逆散射方程是一个不适定性的方程组,要用正则化方法处理方程的不适定性问题,使迭代方法收敛于问题的真实解,才能成功地应用于较高对比度物体的图象重建问题。用Picard准则对不适定问题进行了分析,给出了通过简单图形.确定模型受噪声污染情况以及正则化方法适用范围的方法。在重建实验中。对建立的图像重建算法进行了实验仿真。达到了较好的效果。  相似文献   

16.
The post-buckling response of thin plates made of linear viscoelastic materials is investigated. The employed viscoelastic material is described with fractional order time derivatives. The governing equations, which are derived by considering the equilibrium of the plate element, are three coupled nonlinear fractional partial evolution type differential equations in terms of three displacements. The nonlinearity is due to nonlinear kinematic relations based on the von Kármán assumption. The solution is achieved using the analog equation method (AEM), which transforms the original equations into three uncoupled linear equations, namely a linear plate (biharmonic) equation for the transverse deflection and two linear membrane (Poisson’s) equations for the inplane deformation under fictitious loads. The resulting initial value problem for the fictitious sources is a system of nonlinear fractional ordinary differential equations, which is solved using the numerical method developed recently by Katsikadelis for multi-term nonlinear fractional differential equations. The numerical examples not only demonstrate the efficiency and validate the accuracy of the solution procedure, but also give a better insight into this complicated but very interesting engineering plate problem  相似文献   

17.
We consider the problem of fluorescence lifetime optical tomographic imaging in a weakly scattering medium in the presence of highly scattering inclusions. We suggest an approximation to the radiative transfer equation, which results from the assumption that the transport coefficient of the scattering media differs by an order of magnitude for weakly and highly scattering regions. The image reconstruction algorithm is based on the variational framework and employs angularly selective intensity measurements. We present numerical simulation of light scattering in a weakly scattering medium that embeds highly scattering objects. Our reconstruction algorithm is verified by recovering optical and fluorescent parameters from numerically simulated datasets.  相似文献   

18.
Abstract

Optical scatterometry, a non-invasive characterization method, is used to infer the statistical properties of random rough surfaces. The Gaussian model with rms-roughness [sgrave] and correlation length σ is considered in this paper but the employed technique is applicable to any representation of random rough surfaces. Surfaces with wide ranges of Λ and σ, up to 5 wavelengths (λ), are characterized with neural networks. Two models are used: self-organizing map (SOM) for rough classification and multi-layer perceptron (MLP) for quantitative estimation with nonlinear regression. Models infer Λ and σ from scattering, thus involving the inverse problem. The intensities are calculated with the exact electromagnetic theory, which enables a wide range of parameters. The most widely known neural network model in practise is SOM, which we use to organize samples into discrete classes with resolution ΔΛ = Δσ = 0.5λ. The more advanced MLP model is trained for optimal behaviour by providing it with known parts of input (scattering) and output (surface parameters). We show that a small amount of data is sufficient for an excellent accuracy on the order of 0.3λ and 0.15λ for estimating Λ and σ, respectively.  相似文献   

19.
In this work, the inverse scattering problem for Dirac equations system with discontinuous coefficient and higher order polynomials of spectral parameter in the boundary condition is considered. The scattering function of the problem is defined, and its properties are investigated. The Marchenko-type main equation is obtained and it is shown that the potential is uniquely recovered by the scattering function. A generalization of Marchenko method is given for a class of Dirac operator.  相似文献   

20.
This paper deals with an application of the boundary element method to the analysis of nonlinear sloshing problems, namely nonlinear oscillations of a liquid in a container subjected to forced oscillations. First, the problem is formulated mathematically as a nonlinear initial-boundary value problem by the use of a governing differential equation and boundary conditions, assuming the fluid to be inviscid and incompressible and the flow to be irrotational. Next, the governing equation (Laplace equation) and boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by employing the Galerkin method. Two dynamic boundary condition is reduced to a weighted residual equation by employing the Galerkin method. Two equations thus obtained are discretized by the use of the finite element method spacewise and the finite difference method timewise. Collocation method is employed for the discretization of the integral equation. Due to the nonlinearity of the problem, the incremental method is used for the numerical analysis. Numerical results obtained by the present boundary element method are compared with those obtained by the conventional finite element method and also with existing analytical solutions of the nonlinear theory. Good agreements are obtained, and this indicates the availability of the boundary element method as a numerical technique for nonlinear free surface fluid problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号