首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon fusion and eutectic bonding processes based on the technique of localized heating have been successfully demonstrated. Phosphorus-doped polysilicon and gold films are applied separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments. These films are patterned as line-shape resistive heaters with widths of 5 or 7 μm for the purpose of heating and bonding. In the experiments, silicon-to-glass fusion bonding and silicon to gold eutectic bonding are successfully achieved at temperatures above 1000°C and 800°C, respectively, by applying 1-MPa contact pressure. Both bonding processes can achieve bonding strength comparable to the fracture toughness of bulk silicon in less than 5 min. Without using global heating furnaces, localized bonding process is conducted in the common environment of room temperature and atmospheric pressure. Although these processes are accomplished within a confined bonding region and under high temperature, the substrate temperature remains low. This new class of bonding scheme has potential applications for microelectromechanical systems fabrication and packaging that require low-temperature processing at the wafer level, excellent bonding strength, and hermetic sealing characteristics  相似文献   

2.
The bond strength dependence on bonding temperature and bonding pressure in traditional thermal bonding and surface modification bonding of PMMA is investigated. The results show that the bond strength of the latter bonding method is larger than the former. The effects of post-annealing and aging on bond strength are also demonstrated. Then the bonding parameters of temperature and pressure are optimized, and typical bond strength of 1 MPa is obtained at bonding temperature of 95°C, bonding pressure at 2 MPa, bonding time for 3 min and 50°C post-annealing for 2 h. The successful bonded microfluidic device was obtained through this optimized thermal bonding method.  相似文献   

3.
Characterization of low-temperature wafer bonding using thin-film parylene   总被引:1,自引:0,他引:1  
This paper presents detailed experimental data on wafer bonding using a thin Parylene layer, and reports results on: 1) bond strength and its dependence on bonding temperature, bonding force, ambient pressure (vacuum), and time, 2) bond strength variation and stability up to two years post bond, and 3) bond strength variation after exposure to process chemicals. Wafer bonding using thin (<381 nm) Parylene intermediate layers on each wafer in a standard commercial bonder and aligner has been successfully developed. The Parylene bond strength is optimized at 230/spl deg/C, although Parylene bonding is possible at as low as 130/spl deg/C. The optimized bonding conditions are a low-temperature of /spl sim/230/spl deg/C, a vacuum of /spl sim/ 0.153 mbar, and 800 N force on a 100 mm wafer. The resultant Parylene bond strength is 3.60 MPa, and the strength for wafers bonded at or above 210/spl deg/C is maintained within 93% of its original value after two years. The bond strength is also measured after exposure to several process chemicals. The bond strength was reduced most in undiluted AZ400K (base) by 69% after one week, then in BHF (acid), MF319 (base), Acetone (solvent), and IPA (solvent) by 56%, 33%, 20%, and 8%, respectively, although less than one hour exposure to these chemicals did not cause a significant bond strength change (less than 11%). [1487].  相似文献   

4.
MicrochanneIs were created by fusion bonding of a Pyrex cover to a thermally oxidized silicon wafer, which contained anisotropically etched grooves. Such channels are frequently used in microfluidic handling systems, for example, in chemical analysis. Since in some of these labs-on-a-chip, in particular those used in liquid chromatography, the channels are subjected to high pressures of up to a few hundred bar, it is important to have information about the mechanical stability of the channel chip, in particular of the wafer bond involved in it. The latter is the subject of this paper. The maximum pressure that can be applied to several different channel chips was investigated experimentally. In order to find the relation among this maximum pressure, channel geometry, materials elasticity, and bond energy, an energy model was developed that is generally applicable to all types of wafer bonds. It was shown that the model is substantiated by the experimental pressure data, from which it could be calculated that the effective bond energy increased from 0.018 to 0.19 J/m2 for an annealing temperature ranging from 310 to 470°C  相似文献   

5.
Characterization of wafer-level thermocompression bonds   总被引:4,自引:0,他引:4  
Thermocompression bonding joins substrates via a bonding layer. In this paper, silicon substrates were bonded using gold thin films. Experimental data on the effects of bonding pressure (30 to 120 MPa), temperature (260 and 300/spl deg/C), and time (2 to 90 min) on the bond toughness, measured using the four-point bend technique, are presented. In general, higher temperature and pressure lead to higher toughness bonds. Considerable variation in toughness was observed across specimens. Possible causes of the nonuniform bond quality were explored using finite element analysis. Simulation results showed that the mask layout contributed to the pressure nonuniformity applied across the wafer. Finally, some process guidelines for successful wafer-level bonding using gold thin films are presented.  相似文献   

6.
Low temperature wafer direct bonding   总被引:11,自引:0,他引:11  
A pronounced increase of interface energy of room temperature bonded hydrophilic Si/Si, Si/SiO2, and SiO2/SiO 2 wafers after storage in air at room temperature, 150°C for 10-400 h has been observed. The increased number of OH groups due to a reaction between water and the strained oxide and/or silicon at the interface at temperatures below 110°C and the formation of stronger siloxane bonds above 110°C appear to be the main mechanisms responsible for the increase in the interface energy. After prolonged storage, interface bubbles are detectable by an infrared camera at the Si/Si bonding seam. Desorbed hydrocarbons as well as hydrogen generated by a reaction of water with silicon appear to be the major contents in the bubbles. Design guidelines for low temperature wafer direct bonding technology are proposed  相似文献   

7.
Eutectic aluminum–germanium wafer bonding was used to fabricate (AlGaIn)N thin-film light-emitting diodes (LEDs). Wafer bonding was carried out on 2″ wafer level at a bond temperature of 470 °C using patterned Al bond pads on the GaN-on-sapphire LED epiwafer and plain Ge substrates. The microstructure of the joint formation was characterized via cross-section analysis using scanning electron microscopy and energy dispersive X-ray spectroscopy (EDX). Scanning acoustic microscopy was used to investigate the bond interface. The shear strength was determined to be 1–2 kN/cm2. The formation of a liquid Al–Ge phase is evident from cross-section analysis and optical microscopy. During solidification, Al and Ge are separated into distinct phases again, which is revealed by EDX. The obtained bond is not free of micro-voids, yet it is mechanically stable and suited for the fabrication of thin-film LEDs by removing the sapphire substrate via laser lift-off, which is also demonstrated.  相似文献   

8.
This paper presents the design, fabrication and complete characterization of a high-sensitivity polyimide-based humidity sensor for monitoring internal humidity level in anodically bonded hermetic micropackages. This capacitive sensor is 1 mm on a side and utilizes CU1512 polyimide film with a thickness in the range from 300 Å to 1200 Å sandwiched between two metal electrodes to sense moisture. The measured sensitivity for a sensor with a 1200-Å-thick film is 0.86 pF/%RH, and for a 300-Å-thick sensor is 3.4 pF/%RH. The sensor has been exposed to and survived a one-hour test at 400°C, which is the temperature typically used to perform anodic bonding. Measurements show a drift of less than 1% RH at 50% RH and 37°C for 48 h, and a hysteresis of <2% RH over a range from 30 to 70% RH for a 1200-Å-thick polyimide film sensor. The measured breakdown voltage of the sensor (1200 Å thick) exceeds 20 V and agrees well with other results  相似文献   

9.
In this paper a novel process to bond and, at the same time, to electrically connect a silicon wafer to a glass wafer is presented. It consists of a low temperature anodic bonding process between silicon and glass by using a glass wafer with etched channels in order to contain metal tracks. The glass-to-silicon anodic bonding process at low temperatures (not exceeding 300°C) assures a strong mechanical link (Berthold et al. in Transducers 1999, June:7–10, 1999). The electrical contacts between the metal pads on the backside of a silicon wafer and the metal pads on the glass wafer are achieved by sintering and diffusion of metals due to a kind of thermo compression bonding. This bonding method permits a high vertical control due to a well-controlled etching of the cavity depth and to the thickness precision of both metallization (pads on silicon wafers and metal tracks on glass wafer). This IC-processing compatible approach opens up the way to a new electrical connection concept keeping, at the same time, a strong mechanical bond between glass and silicon wafers for an easier fabrication of a more complex micro-system.  相似文献   

10.
In the process of piezo-resistive pressure sensor packaging, a simple thermo-compression bonding setup has been fabricated to achieve the wire bonding interconnection of a silicon chip with printed circuit board. An annealed gold wire is joined onto a pad surface with a needle-like chisel under a force of 0.5?C1.5?N/point. The temperature of the substrate was maintained in the range of 150?C200°C and the temperature of the chisel was fixed at around 150°C during wire bonding operation. The tensile strength of the wire bonding was measured with a bonding tester by the destructive-pulling experiment and was found to be at the average of 132?mN/mm2. The microstructure of the bonding point was examined by scanning electron microscopy. The interface of the thermo-compression boning was shown to possess an acceptable level of reliability for a micro-electromechanical system (MEMS)-based device. The results showed that this setup can be easily operated for fabrication and is suitable for fabricating not only low-cost pressure sensors, but also other MEMS devices.  相似文献   

11.
New test structures have been designed, fabricated and tested to monitor the quality of the anodic bonding between silicon and glass. The main advantage of the described test is that it is not destructive and allows the bond quality to be monitored in processed wafers. This test is very easy to implement in a chip or in a wafer because of its simplicity. Test structures consist of a matrix of circular and rectangular cavities defined by reactive ion etching (RIE) on the silicon wafer, with different sizes and depths. The bonding process and quality can be monitorized by the measurement of the size of the smallest bonded cavity and the distance between the bonded area and the cavity border. These structures give information about the level of electrostatic pressure that has been applied to pull together into intimate contact the surfaces of the two wafers. The higher the electrostatic pressure, the better the bond. We have applied these test structures to study the influence of the voltage and the temperature on the anodic bonding process. Results are in good agreement with finite-element method (FEM) simulations.  相似文献   

12.
The work presented in this paper deals with the bonding of small structures, down to 1 μm. Its aim is to evaluate the dimensional limits of anodic bonding between silicon and pyrex 7740 glass. Test structures consisting in silicon pillars with controlled radii have been developed. The silicon pillars have been fabricated by deep reactive ion etching to allow a good geometry control of the structures. A collection of matrices of 3×3 identical silicon test structures with dimensions from 200 to 1 μm has been fabricated to determine the smallest area that can bond anodically. The test results have been applied to the transfer of small structures from one wafer to another wafer by bonding, with the final objective of transferring tips for AFM probes. From the test results, a new test for bonding has been defined, based on the pull test of small structures with controlled dimensions. Preliminary simulations by FEM of the pull test of the test structures are in agreement with the experimental results. The test has been used to determine the effect of the voltage and temperature conditions during the anodic bonding on the bond strength.  相似文献   

13.
Wang  Quan  Yang  Xiaodan  Zhang  Yanmin  Ding  Jianning 《Microsystem Technologies》2011,17(10):1629-1633

In the process of piezo-resistive pressure sensor packaging, a simple thermo-compression bonding setup has been fabricated to achieve the wire bonding interconnection of a silicon chip with printed circuit board. An annealed gold wire is joined onto a pad surface with a needle-like chisel under a force of 0.5–1.5 N/point. The temperature of the substrate was maintained in the range of 150–200°C and the temperature of the chisel was fixed at around 150°C during wire bonding operation. The tensile strength of the wire bonding was measured with a bonding tester by the destructive-pulling experiment and was found to be at the average of 132 mN/mm2. The microstructure of the bonding point was examined by scanning electron microscopy. The interface of the thermo-compression boning was shown to possess an acceptable level of reliability for a micro-electromechanical system (MEMS)-based device. The results showed that this setup can be easily operated for fabrication and is suitable for fabricating not only low-cost pressure sensors, but also other MEMS devices.

  相似文献   

14.
We present the methods used to fabricate a micromechanical silicon optical modulator for use in a fiber-to-the-home applications. We emphasize the efforts made to realize a practical, robust, manufacturable, and easily packaged device. In addition, recent speed, temperature stability, and reliability results are presented. Rise and fall times of 132 and 125 ns, respectively, have been observed in response to a square wave drive signal. The device has been temperature cycled from -50°C to 90°C and shown greater than 10-dB optical contrast ratio over this temperature range. Finally, the device has been cycled at 500 kHz for a period of nearly two months (two-trillion cycles) without a noticeable loss in performance  相似文献   

15.
Recently, polymeric materials have been explored as more versatile alternatives for the fabrication of polymerase chain reaction (PCR) microchips. Poly(methyl methacrylate) (PMMA) is a popular substrate material due to its high mechanical stability, good chemical properties and most importantly, its suitability for cheap and simple CO2 laser ablation. However, it has a low glass transition temperature (Tg) of 105 °C, which is just above the denaturation temperature for PCR, thus the bond integrity is compromised. Polycarbonate (PC) is preferred as a substrate for PCR microchip as it has a higher Tg of 150 °C; but since its thermal properties are not suitable for CO2 laser light, the more expensive excimer laser has to be employed. Here we report a novel hybrid PMMA-PC microchip by bonding a PC cover plate with a PMMA substrate containing microchannel which is fabricated by CO2 laser ablation. This hybrid microchip has improved heat tolerance, such that the bonding integrity is sustained at the denaturation temperature. DNA amplification is found to be more efficiently performed in a PMMA-PC microchip than in a PMMA-PMMA microchip.  相似文献   

16.
The bonding of hydrophobic, reconstructed (001) Si surfaces obtained with high temperature H2 processes has been studied with atomic force microscopy, low energy electron diffraction spectroscopy, X-ray reflectivity and bonding energy measurements. Surface reconstruction is shown to strongly affect bonding mechanisms. As a consequence, bonding energies of such surfaces are significantly higher, in the room temperature ?500 °C range, than those of “HF-last” surfaces.  相似文献   

17.
Bonding of soda-lime glass microchips at low temperature   总被引:1,自引:1,他引:0  
A simple, low-temperature bonding process is described for the fabrication of soda-lime glass microfluidic chips. Due to its chemical inertness and temperature stability, glass remains a popular material for microfluidic chips despite the advances that have been made with polymer materials. Conventional thermal bonding is performed over the course of 24 h at 600°C and requires a precise temperature-controlled furnace. Here we introduce a simple low-temperature alternative for the high-strength bonding of soda-lime glass wafers based on the use of diluted HF solution in combination with pressure at a temperature of 65°C.  相似文献   

18.
This paper presents the development of a low temperature transient liquid phase bonding process for 8″ wafer-level packaging of micro-electro-mechanical systems. Cu/Sn and Au/Sn material systems have been investigated under varying bonding temperatures from 240 to 280 °C and different dwell times from 8 to 30 min. The used bond frame had a width of 80 μm and lateral dimensions of 1.5 mm × 1.55 mm. The sealing frame of the cap wafer consisted of Au and Cu, respectively, and Sn. The MEMS wafer only holds the parent metal of Au or Cu. High quality bonds were confirmed by shear tests, cleavage analysis, polished cross-section analysis using optical and electron microscope, energy dispersive X-ray spectroscopy and pressure cocker test. The samples showed high shear strength (>80 MPa), nearly perfect bond regions and no main failure mode in the cleavage analyses. Non-corroded Cu test structures confirmed the hermeticity.  相似文献   

19.
We present a study on the use of corona discharge surface treatment to achieve a fast thermal diffusion bonding process for the creation of microfluidic chips. Wafer scale bonding at 100 mm diameter was attempted. Polymethyl methacrylate (PMMA) wafers were hot embossed to create microchannels before bonding to another blank PMMA wafer. Corona discharge treatment of the PMMA resulted in a more hydrophilic surface. The average water contact angle on PMMA surface decreased from 74.5° before treatment to 35.5° after the treatment. The optimized bonding condition was found to be: 108°C for 4 min at a contact pressure of 3.1 MPa. The bonded chips could withstand an internal gauge pressure in the microchannels of at least seven bars. The rectangular shape of the cross section of the microchannels was conserved with some contraction in the dimensions of 3.7% on the mean widths and 2.1% on the mean depths. Bonding strength was found to increase with the bonding temperature and time while the effect of bonding pressure is evident at lower pressures. At higher pressures, the effect of bonding pressure seemed to have reduced. These effects could be explained by the diffusion mechanisms of the process.  相似文献   

20.
Plasma activations for wafer bonding have been investigated for their ability to induce strong bonding even at low temperature treatment. Generally occurring with plasma treatment, revelation of many bonding defects (e.g. bubbles, voids,...) during (200–500°C) low temperature annealing is an important issue. In this paper, we will focus on bonding energy and quality enhancement obtained after reactive ion etch or microwave plasma treatment, under various atmospheres. Effects of a short plasma treatment on Si and SiO2 surfaces are highlighted hereafter. Low-density layers around bonding interfaces have been characterized by interfacial X-ray reflectivity. Evolution of these layers through subsequent annealing are discussed to help in understanding mechanisms involved through such plasma treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号