首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
高钛矿渣-水泥复合胶凝材料体系的水化机理研究   总被引:1,自引:0,他引:1  
采用SEM,XRD,TG-DSC等微观测试手段,探讨掺高钛矿渣-水泥复合胶凝材料体系的水化机理。研究结果表明:高钛矿渣主要由结晶性强的稳定矿物组成,水化活性低;高钛矿渣颗粒分散并填充水泥颗粒,明显改善浆体结构。水化反应早期,硬化浆体结构疏松,水化产物较少,有大量未被反应的稳定晶相。反应后期,Ca(OH)2参与二次水化反应,强度稳定增长。  相似文献   

2.
在中国西部部分地区的水电工程建设中,传统矿物掺合料短缺,开展混凝土新型材料(如石粉)的工作性能研究很有必要。以掺砂板岩石粉多元胶凝体系为研究对象,研究了掺砂板岩石粉对胶凝体系热学、力学及收缩性能的影响,结合扫描电镜(SEM)和综合热分析仪(TG-DSC)分析了掺砂板岩石粉胶凝体系的水化产物及反应程度。试验结果表明:(1)掺入15%~55%砂板岩石粉的胶凝体系其水化热和强度小于纯水泥胶凝体系,且掺量越高,水化热和强度降幅越大;(2) 3~28 d掺砂板岩石粉的水泥胶砂强度增长明显,90~180 d强度增长缓慢;(3)掺砂板岩石粉的胶凝体系其自收缩变形可分为快速增长段(0~8.5 h)和缓慢增长段(8.5~60.0 h),适宜掺量砂板岩石粉的掺入有助于降低胶凝体系的自收缩变形,单掺35%砂板岩石粉的净浆体系自收缩减小17.6%;(4)砂板岩石粉对水泥熟料早期水化的加速效应明显,砂板岩石粉与硅粉复掺时,水泥熟料早期水化加速效应最为显著,且强度与水化热均高于单掺砂板岩石粉或复掺砂板岩石粉和粉煤灰的胶凝体系,可作为混凝土新型掺和料替代方案。  相似文献   

3.
水泥-粉煤灰-矿渣粉三元胶凝体系体积稳定性的研究   总被引:1,自引:0,他引:1  
研究了不同胶凝材料体系水泥浆体的体积收缩变形特性。试验结果表明:水泥品种与细度是影响硬化浆体体积稳定性的主要因素,水泥细度越大,硬化浆体的体积稳定性越差,低热(高贝利特)硅酸盐水泥浆体的体积稳定性优于中热硅酸盐水泥;矿物掺和料的掺入使得胶凝材料的体积稳定性变得复杂,优质的矿物掺和料能够降低硬化浆体的收缩;水泥-粉煤灰二元胶凝体系的体积稳定性优于水泥-粉煤灰-矿渣粉三元胶凝体系。  相似文献   

4.
掺矿渣粉及粉煤灰混凝土微观性能试验研究   总被引:9,自引:0,他引:9  
 采用 X射线衍射分析、差示扫描量热法、水银压入测孔法、扫描电子显微镜观查等方法,对单掺矿渣粉、单掺粉煤灰、双掺矿渣粉及粉煤灰的净浆试件的水化产物、孔结构等微观性能进行了试验。结果表明:双掺矿渣粉及粉煤灰与单掺矿渣粉或单掺粉煤灰相比,总孔面积、平均孔径、总孔隙率都得到改善;在早期,掺矿渣粉比掺粉煤灰反应要快;而在后期,粉煤灰的火山灰效应已得到释放,粉煤灰颗粒表面有大量的水化产物生成。  相似文献   

5.
焦雪梅  谢刚川  秦灿 《水力发电》2020,46(12):124-128
采用电阻率测试仪分别对普通硅酸盐水泥、高抗硫水泥及单掺和未掺粉煤灰条件下的低热水泥水化的电阻率进行测试。对比分析3种水泥早期水化差异,并揭示粉煤灰掺量对低热水泥基胶凝体系水化进程的影响机理。试验结果表明:在水化早期,低热水泥浆体的电阻率随粉煤灰掺量的增加而增大;在水化后期,电阻率随粉煤灰掺量的增加而减小;与普通硅酸盐水泥和高抗硫水泥相比,低热水泥在水化早期电阻率值最小,而在水化后期电阻率值最大。  相似文献   

6.
为探讨粉煤灰在高温热害隧洞混凝土中的应用,以新疆齐热哈塔尔水电站引水隧洞为例,在高温养护条件下对复合胶凝材料的早期水化特性进行研究。结果表明,高温环境下粉煤灰作为胶凝材料掺入混凝土后,可明显降低水化速度并减小水化热;水化反应进行1 d后,纯水泥浆体中有大量Ca(OH)_2、C-S-H凝胶和未水化的水泥颗粒,掺入粉煤灰后,Ca(OH)_2、Ca/Si和浆体抗折强度有所降低。  相似文献   

7.
通过测定掺凝灰岩石粉和VF防裂剂的水泥浆体的凝结时间和化学结合水量,研究了凝灰岩石粉和VF防裂剂对水泥浆体水化特性的影响,并采用X射线衍射技术(XRD)分析了其影响机理.结果表明:凝灰岩石粉在水泥水化前期起惰性填料作用,减缓水泥净浆的凝结,降低水泥浆体化学结合水量,在水化后期与水化产物Ca(OH)2发生二次反应,提升水泥浆体化学结合水量增长速率;VF防裂剂与水泥水化产物Ca(OH)2反应生成钙矾石,有利于水化产物间相互搭接,从而起促凝作用,并且VF防裂剂对凝灰岩石粉中的活性SiO2,Al2O3起化学激发作用,进一步提升水泥浆体后期化学结合水量增长速率.  相似文献   

8.
为了评价几种传统水化热计算方法对低热水泥的适用性,进而提出低热水泥胶凝体系水化热的计算公式,采用直接法测定了不同掺量粉煤灰、矿渣条件下的低热水泥胶凝体系7 d水化热,对比应用矿物成分法、折算公式法、数值拟合法算得相应结果,调整各模型参数并对其计算精度进行评价分析。研究结果表明:矿物成分法仅能计算特征龄期下水泥水化热,算得结果与试验数值差距较大;折算公式法用于计算单一掺合料下胶凝材料7 d水化热时所得结果准确度较高;数值拟合法适用于单掺、复掺不同掺量矿物掺合料的低热水泥胶凝体系,该体系下粉煤灰、矿渣的最终水化热分别为126.6 J/g和172.4 J/g。研究成果可为大体积混凝土的绝热温升计算提供基础数据参考。  相似文献   

9.
钦立峰 《吉林水利》2021,(8):25-28,54
为探究粉煤灰掺量对低热硅酸盐水泥早期水化进程的影响,采用电声法ζ-电位分析仪对低热水泥水化240min的ζ-电位进行测试.结果表明:在水胶比为0.40、 水化20min左右,纯水泥浆体中钙矾石和水化硅酸钙开始生成,随着粉煤灰掺量的增加,钙矾石和水化硅酸钙开始生成的时间逐渐延长.在水化120min左右,纯水泥浆体中便有大量钙矾石和水化硅酸钙生成,且粉煤灰掺量大于或等于30%时,浆体中因大量粉煤灰静电吸附孔溶液Ca2+而使大量钙矾石和水化硅酸钙生成的时间至少延长30min.当水泥浆体进入硬化状态后,粉煤灰掺量大于30%的水泥石中钙矾石和水化硅酸钙生长迟缓,增大了水泥石孔隙率.  相似文献   

10.
粉煤灰与磷矿渣对水泥水化热及胶砂强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
试验研究了单掺粉煤灰和复掺磷矿渣与粉煤灰(PF料)对水泥水化热及水泥胶砂强度的影响,结果表明:水泥水化热随粉煤灰和PF料掺量的增大而降低;与纯水泥相比,掺粉煤灰或PF料的水泥7 d水化热降低百分率均低于掺合料(粉煤灰、PF料)替代水泥的百分率;复掺PF料的胶砂抗压强度比单掺粉煤灰高,且PF料对延迟放热峰值出现时间比粉煤灰好。  相似文献   

11.
杨梦卉  何真  杨华美 《水利学报》2017,48(4):488-495
以占胶凝材料总量60%的石灰石粉与粉煤灰进行不同比例复掺,开展了不同胶凝材料碾压混凝土的抗压强度、抗冻性能和抗渗性能试验研究,利用水化热、扫描电镜以及压汞法对不同比例石灰石粉与粉煤灰胶凝体系的水化过程与微结构形成进行了分析。研究发现,当石灰石粉与粉煤灰总量占胶凝材料总量的60%且石灰石粉取代粉煤灰比例为50%时,由于早期石灰石粉促进水化加上粉煤灰的填充效应、后期粉煤灰的火山灰活性以及石灰石粉的密实效应,二者的耦合作用可使得碾压混凝土形成密实的微结构,获得良好的力学性能和耐久性能。  相似文献   

12.
研究了水灰比和矿物掺合料对硬化水泥石在20℃~85℃热膨胀性能的影响,并进行了机理分析。研究结果表明:水泥石的热膨胀率和热膨胀系数随着水灰比的增大而减小;粉煤灰和矿粉均可有效降低水泥石的热膨胀性能,其降低程度随掺量的增大而增大;当矿物掺合料掺量相同时,粉煤灰水泥石的热膨胀率及热膨胀系数略低于矿粉水泥石。通过观察水泥石微观形貌和测定水泥石孔隙率等方法,对硬化水泥石的热膨胀性能进行机理分析。  相似文献   

13.
MgO可用于补偿大体积混凝土的收缩,大坝混凝土中也已有应用高镁水泥的先例。为充分利用高镁水泥的膨胀特性,避免其膨胀量过大,本文研究了矿渣掺量和细度对其膨胀特性的影响,并表征了硬化浆体的孔结构与微观形貌。结果表明,掺入矿渣可以有效降低高镁水泥硬化浆体的膨胀率。矿渣的掺量越高,硬化浆体膨胀率越低。矿渣的细度越细,抑制硬化浆体膨胀的作用越明显,中位径为4.81μm时,硬化浆体膨胀率显著降低。矿渣抑制高镁水泥硬化浆体膨胀的作用,主要源于矿渣掺入之后所产生的“物理稀释作用”和“二次水化效应”。“物理稀释效应”降低了硬化浆体中方镁石总量;“二次水化效应”填充了硬化浆体空隙,使硬化浆体孔径细化,毛细孔缓冲和释放硬化浆体膨胀应力。  相似文献   

14.
粉煤灰对水泥砂浆早期电学行为与 开裂敏感性影响研究   总被引:2,自引:0,他引:2  
采用新型非接触式电阻率测定仪和椭圆环收缩开裂 试验装置,分别测试了粉煤灰复合水泥浆体早期电阻率及粉煤灰复合水泥砂浆的初始开裂时间。结果表明:掺粉煤灰的水泥基材料早期电阻率变化与其水化过程和微结构形成以及开裂敏感性有着密切联系,随着粉煤灰掺量的增加,电阻率曲线上硬化特征点推迟,粉煤灰的延迟水化硬化作用降低了砂浆的早期开裂敏感性,在干燥条件下,粉煤灰砂浆的初始开裂时间显著延长;然而,为了确保适宜的早期强度增长率和其它技术性能的要求,粉煤灰掺量需适当控制。  相似文献   

15.
李响  严建军  杨华全  董芸 《人民长江》2011,42(19):88-90
优良的孔结构是现代水泥基材料高强度和高耐久性的必需条件.通过压汞法(MIP)对含有大掺量矿物掺和料的硬化水泥浆体孔结构进行了研究.结果表明,大掺量矿物掺和料的掺入使得水泥硬化浆体的早期孔隙率增加,大孔较多;随着龄期的延长,含有大掺量矿物掺和料的样品微观结构明显得到改善,孔隙率均有不同程度地降低;含有矿渣硅灰的样品90 ...  相似文献   

16.
基于传统水化热模型计算水泥水化热,建立矿物掺合料水化热计算公式;采用直接法测定掺粉煤灰、矿渣条件下普通硅酸盐水泥和低热水泥基胶凝材料体系1~7d水化热.计算结果与实测结果对比表明:矿物掺和料水化热双指数计算公式可表征普通硅酸盐水泥和低热水泥基胶凝材料体系下粉煤灰和矿渣1~7d水化热,可采用此法结合水泥水化热计算方法进行...  相似文献   

17.
为了对低热硅酸盐水泥胶凝体系力学和热学综合性能进行评价,从而为低热水泥在大体积混凝土中的应用提供参考,以胶凝材料不同龄期抗压强度、抗折强度和水化热为指标,通过限定上限/下限线性计算规则建立评价目标函数,计算不同矿物掺合料下的低热水泥胶凝体系综合性能满意度,并绘制满意度等值线图。研究结果表明:低热水泥胶凝体系综合性能满意度等值线分布可以近似看作系列同心椭圆线;粉煤灰掺量在区间、矿渣粉掺量在区间范围内其综合性能满意度较高,具备较好的早强低热性能。该性能评价函数以及满意度等值线图的联合运用,为复合胶凝材料体系力学及热学综合性能评价提供了新的思路。  相似文献   

18.
三峡大坝粉煤灰的水化反应速率与大坝混凝土贫钙问题   总被引:10,自引:0,他引:10  
陈益民  张洪涛  林震 《水利学报》2002,33(8):0007-0012
用选择溶解、化学分析、X射线衍射分析(XRD)、热重分析(TG)等方法研究了三峡大坝混凝土所用的中热水泥-一级粉煤灰体系中粉煤灰的反应速率、反应程度、水化反应产物与其掺加量的关系. 结果指出, 随粉煤灰对水泥取代数量的增加, 粉煤灰反应的程度降低, 但水化物的绝对数量增加. 粉煤灰中CaO、MgO、Fe2O3优先进入水化产物中, 反应率较高; SiO2和Al2O3反应率较低, 但是由于它们含量大, 因而进入水化产物中的数量较多, 其中SiO2反应较慢但水化物数量持续增长. 该体系中粉煤灰数量每增加10%, 水化产物中Ca(OH)2数量减少约1/3. 据此判断出为预防三峡大坝混凝土发生贫钙现象, 粉煤灰掺加量应小于50%.  相似文献   

19.
为了分析新型矿物掺合料对高性能混凝土界面区微结构的影响,采用层析方法进行研究。通过分别掺入不同量的钢渣、矿渣及粉煤灰,定量分析了硅酸盐水泥浆体 - 集料界面区氢氧化钙取向指数和界面区厚度的变化。试验结果表明: ( 1) 掺入 30% 矿渣粉后,界面处 Ca( OH) 2 取向比纯水泥明显下降,几乎没有取向,界面区厚度比纯水泥浆体的界面略低。掺 30% 粉煤灰后,界面处 Ca( OH) 2取向度介于纯水泥与掺矿渣粉水泥界面取向度之间,但过渡区厚度明显减小。加入 30% 的钢渣后,水泥浆体与集料的界面晶体取向明显增加,界面区厚度也明显增加; ( 2) 随钢渣比表面积增加,水泥浆体与集料界面的 Ca( OH) 2 晶体取向度及界面厚度都有不同程度的减小。当钢渣比表面积增加至600 m2 /kg 时,含钢渣浆体界面的性能已优于纯水泥浆体界面的性能; ( 3) 钢渣与矿渣粉或粉煤灰二元复合只能改善浆体与集料界面区某一方面的性能,但钢渣与矿渣粉、粉煤灰三元复合可明显改善浆体与集料界面的综合性能。研究结果可为高性能混凝土整体性能研究及设计提供参考意见。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号