首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文针对研究减摇水舱性能的船舶试验台位置系统,设计了基于DSP芯片的数字控制器.在建立位置系统的数学模型基础上,介绍基于TMS320LF2407A的DSP控制器的硬件结构和软件设计.实验研究表明本文设计的DSP数字控制器具有良好的控制效果.  相似文献   

2.
基于TMS320C240x的励磁控制器研究   总被引:1,自引:0,他引:1  
针对现在电力系统中励磁控制器数据处理慢、传输效率低的问题.本文提出了一种基于TMS320C240xa的DSP微机励磁控制器的设计方法,文中详细介绍了励磁控制器的模拟量输入单元、同步测频单元、数字量输出单元和移相触发单元的硬件设计.经过实验验证,这种基于DSP的微机励磁控制器具有硬件简单、软件灵活、抗干扰能力强、控制精度高的特点,可以推广应用于各种同步发电机的励磁控制.  相似文献   

3.
基于多DSP的伺服电机分布式控制CAN总线通讯系统   总被引:6,自引:0,他引:6  
本文主要介绍了基于多DSP的CAN总线通讯伺服电机分布式控制系统的设计.利用DSP内部集成的CAN控制器实现CAN协议的物理层和数据链层功能,实现对各节点的监控和管理.实验结果表明了其有效性和可靠性.  相似文献   

4.
基于DSP的工业机器人控制器的设计与实现   总被引:13,自引:1,他引:13  
谈世哲  梅志千  杨汝清 《机器人》2002,24(2):134-139
提出了一种基于DSP技术的工业机器人控制器的设计,该控制器采用一台工业PC机以 及一块DSP多轴运动控制卡,较好地实现了机器人的实时控制,提高了机器人控制器的运动 控制性能,最后给出了相关的实验和结论.  相似文献   

5.
针对现在电力系统中励磁控制器数据处理慢,传输效率低的问题,本文提出了一种基于TMS320C240xa的DSP微机励磁控制器的设计方法,文中详细介绍了励磁控制器的模拟量输入单元、同步测频单元、数字量输出单元和移相触发单元的硬件设计,并给出软件的主程序和中断服务程序设计方案.经过实验验证,这种基于DSP的微机励磁控制器具有硬件简单,软件灵活,抗干扰能力强,控制精度高.可以推广应用于各种同步发电机的励磁控制.  相似文献   

6.
在分析跟踪伺服系统特点的基础上,以TI公司DSP芯片TMS320F2812作为主控制芯片,采用CAN总线与上位机通信,设计了基于DSP与CAN总线的多轴跟踪伺服运动控制器。给出了该控制器的功能和硬件结构,以及软件流程设计。实验结果表明,该控制器具有高集成度、灵活性、实时性、模块化的特点。  相似文献   

7.
针对目前康复护理床功能单一化、智能程度低等问题,设计了一套融合ARM与DSP双控制器的智能实时控制系统。该系统主控制器采用ARM进行实时控制,DSP作为副控制器接收采集的人脸信息,并进行人脸识别判断。智能控制系统主要对主控制器ARM与副控制器DSP通过SPI通信时的硬件和软件进行了详细的阐述。通过实验测试可知,ARM与DSP通过SPI通信稳定可靠且速率快,整个双控制智能实时控制系统具有良好的控制效果。  相似文献   

8.
随着制造领域对嵌入式运动控制系统应用范围的扩大,基于异构多核的嵌入式控制器必为重要发展方向之一。首先说明异构多核控制器取得成效,以及现有控制器在数据通信接口方面存在缺陷。本设计运动控制器以异构处理器——OMAPL138+FPGA为核心,OMAPL138内部集成ARM9和DSP C6748处理器核。ARM9内嵌Liunx操作系统,以增强控制器多任务协调能力;DSP不运行操作系统,可保证运算实时性。重点阐述ARM与DSP、DSP与FPGA以及控制器与PC之间通信的高速接口设计和固件设计。通过实验表明:该运动控制器数据交换速率高,吞吐量大,稳定性高,为异构多核控制器高速通信接口提供参考。  相似文献   

9.
数字信号处理芯片TMS320F240是针对电机、运动控制的专用DSP控制器。利用控制器DSP(TMS320F240)实现感应电机直接转矩控制系统的全数字化,对控制系统的硬件包括外围接口进行了设计,并用DSP汇编语言进行了软件编程设计。通过试验证明了系统设计的正确性。实验结果表明:系统具有优越动态和静态性能。  相似文献   

10.
针对小型离网型风力发电机的特点,设计了2kW风能控制器对蓄电池进行有效的充电管理。控制器的特点是采用了触摸屏对控制器参数进行设置、修改并实时显示。在设计中采用TI公司的DSP28335进行控制器主电路的控制,通过buck电路对蓄电池进行三阶段充电。通过AT89S51单片机控制触摸屏,实现对控制器参数的设定、显示和DSP之间的通信。通过实验证明,该控制器设计新颖,通过智能化三阶段蓄电池充电管理,提高蓄电池的充电效率,有效延长蓄电池使用寿命。  相似文献   

11.
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.  相似文献   

12.
We applied our recently developed kinetic computational mutagenesis (KCM) approach [L.T. Chong, W.C. Swope, J.W. Pitera, V.S. Pande, Kinetic computational alanine scanning: application to p53 oligomerization, J. Mol. Biol. 357 (3) (2006) 1039–1049] along with the MM-GBSA approach [J. Srinivasan, T.E. Cheatham 3rd, P. Cieplak, P.A. Kollman, D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc. 120 (37) (1998) 9401–9409; P.A. Kollman, I. Massova, C.M. Reyes, B. Kuhn, S. Huo, L.T. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (12) (2000) 889–897] to evaluate the effects of all possible missense mutations on dimerization of the oligomerization domain (residues 326–355) of tumor suppressor p53. The true positive and true negative rates for KCM are comparable (within 5%) to those of MM-GBSA, although MM-GBSA is much less computationally intensive when it is applied to a single energy-minimized configuration per mutant dimer. The potential advantage of KCM is that it can be used to directly examine the kinetic effects of mutations.  相似文献   

13.
We applied our recently developed kinetic computational mutagenesis (KCM) approach [L.T. Chong, W.C. Swope, J.W. Pitera, V.S. Pande, Kinetic computational alanine scanning: application to p53 oligomerization, J. Mol. Biol. 357 (3) (2006) 1039–1049] along with the MM-GBSA approach [J. Srinivasan, T.E. Cheatham 3rd, P. Cieplak, P.A. Kollman, D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc. 120 (37) (1998) 9401–9409; P.A. Kollman, I. Massova, C.M. Reyes, B. Kuhn, S. Huo, L.T. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (12) (2000) 889–897] to evaluate the effects of all possible missense mutations on dimerization of the oligomerization domain (residues 326–355) of tumor suppressor p53. The true positive and true negative rates for KCM are comparable (within 5%) to those of MM-GBSA, although MM-GBSA is much less computationally intensive when it is applied to a single energy-minimized configuration per mutant dimer. The potential advantage of KCM is that it can be used to directly examine the kinetic effects of mutations.  相似文献   

14.
(i) Call a c.e. degree b anti-cupping relative to x, if there is a c.e. a < b such that for any c.e. w, w x implies a ∪ w b ∪ x.(ii) Call a c.e. degree b everywhere anti-cupping (e.a.c.), if it is anti-cupping relative to x for each c.e. degree x.By a tree method, we prove that every high c.e. degree has e.a.c. property by extending Harrington's anti-cupping theorem.  相似文献   

15.
The discoveries of continuations   总被引:4,自引:0,他引:4  
We give a brief account of the discoveries of continuations and related concepts by A. van Wijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth, J. H. Morris, M. J. Fischer, and S. K. Abdali.  相似文献   

16.
The purpose of this study is to give a Taylor polynomial approximation for the solution of hyperbolic type partial differential equations with constant coefficients. The technique used is an improved Taylor matrix method, which has been given for solving ordinary differential, integral and integro-differential equations [M. Gülsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math. 82(5) (2005), pp. 629–642; M. Gülsu and M. Sezer, On the solution of the Riccati equation by the Taylor matrix method, Appl. Math. Comput. 188 (2007), pp. 446–449; A. Karamete and M. Sezer, A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math. 79(9) (2002), pp. 987–1000; N. Kurt and M. Çevik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008), pp. 530–536; N. Kurt and M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008), pp. 839–850; ?. Nas, S. Yalçinba?, and M. Sezer, A method for approximate solution of the high-order linear Fredholm integro-differential equations, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, Taylor polynomial solution of Volterra integral equations, Int. J. Math. Edu. Sci. Technol. 25(5) (1994), pp. 625–633; M. Sezer, A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, M. Gülsu, and B. Tanay, A matrix method for solving high-order linear difference equations with mixed argument using hybrid Legendre and Taylor polynomials, J. Franklin Inst. 343 (2006), pp. 647–659; S. Yalçinba?, Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equation, Appl. Math. Comput. 127 (2002), pp. 196–206; S. Yalçinba? and M. Sezer, The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000), pp. 291–308]. Some numerical examples, which consist of initial and boundary conditions, are given to illustrate the reliability and efficiency of the method. Also, the results obtained are compared by the known results; the error analysis is performed and the accuracy of the solution is shown.  相似文献   

17.
It is well known that there is no analytic expression for the electrical capacitance of the unit cube. However, there are several Monte Carlo methods that have been used to numerically estimate this capacitance to high accuracy. These include a Brownian dynamics algorithm [H.-X. Zhou, A. Szabo, J.F. Douglas, J.B. Hubbard, A Brownian dynamics algorithm for calculating the hydrodynamic friction and the electrostatic capacitance of an arbitrarily shaped object, J. Chem. Phys. 100 (5) (1994) 3821–3826] coupled to the “walk on spheres” (WOS) method [M.E. Müller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Stat. 27 (1956) 569–589]; the Green’s function first-passage (GFFP) algorithm [J.A. Given, J.B. Hubbard, J.F. Douglas, A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules, J. Chem. Phys. 106 (9) (1997) 3721–3771]; an error-controlling Brownian dynamics algorithm [C.-O. Hwang, M. Mascagni, Capacitance of the unit cube, J. Korean Phys. Soc. 42 (2003) L1–L4]; an extrapolation technique coupled to the WOS method [C.-O. Hwang, Extrapolation technique in the “walk on spheres” method for the capacitance of the unit cube, J. Korean Phys. Soc. 44 (2) (2004) 469–470]; the “walk on planes” (WOP) method [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802]; and the random “walk on the boundary” (WOB) method [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473]. Monte Carlo methods are convenient and efficient for problems whose solution includes singularities. In the calculation of the unit cube capacitance, there are edge and corner singularities in the charge density distribution. In this paper, we review the above Monte Carlo methods for computing the electrical capacitance of a cube and compare their effectiveness. We also provide a new result. We will focus our attention particularly on two Monte Carlo methods: WOP [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802; C.-O. Hwang, T. Won, Edge charge singularity of conductors, J. Korean Phys. Soc. 45 (2004) S551–S553] and the random WOB [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473] methods.  相似文献   

18.
《国际计算机数学杂志》2012,89(14):3273-3296
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases [X. Chen, On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms, Ann. Inst. Statist. Math. 42 (1990), pp. 387–401; X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), pp. 37–48; Y. Chen and D. Cai, Inexact overlapped block Broyden methods for solving nonlinear equations, Appl. Math. Comput. 136 (2003), pp. 215–228; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Analysis and Applications, L.B. Rall, ed., Academic Press, New York, 1971, pp. 425–472; P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, Vol. 35, Springer-Verlag, Berlin, 2004; P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal. 16 (1979), pp. 1–10; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993), pp. 211–217; L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; D. Li and M. Fukushima, Globally Convergent Broyden-like Methods for Semismooth Equations and Applications to VIP, NCP and MCP, Optimization and Numerical Algebra (Nanjing, 1999), Ann. Oper. Res. 103 (2001), pp. 71–97; C. Ma, A smoothing Broyden-like method for the mixed complementarity problems, Math. Comput. Modelling 41 (2005), pp. 523–538; G.J. Miel, Unified error analysis for Newton-type methods, Numer. Math. 33 (1979), pp. 391–396; G.J. Miel, Majorizing sequences and error bounds for iterative methods, Math. Comp. 34 (1980), pp. 185–202; I. Moret, A note on Newton type iterative methods, Computing 33 (1984), pp. 65–73; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), pp. 71–84; W.C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1968), pp. 42–63; T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer. Math. 51 (1987), pp. 545–557; P.P. Zabrejko and D.F. Nguen, The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim. 9 (1987), pp. 671–684; A.I. Zin[cbreve]enko, Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR (1963), pp. 156–161]. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

19.
Although the observations concerning the factors which influence the siRNA efficacy give clues to the mechanism of RNAi, the quantitative prediction of the siRNA efficacy is still a challenge task. In this paper, we introduced a novel non-linear regression method: random forest regression (RFR), to quantitatively estimate siRNAs efficacy values. Compared with an alternative machine learning regression algorithm, support vector machine regression (SVR) and four other score-based algorithms [A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Rational siRNA design for RNA interference, Nat. Biotechnol. 22 (2004) 326-330; K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-Hamazaki, A. Juni, R. Ueda, K. Saigo, Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference, Nucleic Acids Res. 32 (2004) 936-948; A.C. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova, S. Scaringe, W.R. Sellers, A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens, Nucleic Acids Res. 32 (2004) 893-901; M. Amarzguioui, H. Prydz, An algorithm for selection of functional siRNA sequences, Biochem. Biophys. Res. Commun. 316 (2004) 1050-1058) our RFR model achieved the best performance of all. A web-server, RFRCDB-siRNA (http://www.bioinf.seu.edu.cn/siRNA/index.htm), has been developed. RFRCDB-siRNA consists of two modules: a siRNA-centric database and a RFR prediction system. RFRCDB-siRNA works as follows: (1) Instead of directly predicting the gene silencing activity of siRNAs, the service takes these siRNAs as queries to search against the siRNA-centric database. The matched sequences with the exceeding the user defined functionality value threshold are kept. (2) The mismatched sequences are then processed into the RFR prediction system for further analysis.  相似文献   

20.
We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations.

Program summary

Title of the program:DPEMC, version 2.4Catalogue identifier: ADVFProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVFProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systemsOperating system: UNIX; LinuxProgramming language used: FORTRAN 77High speed storage required:<25 MBNo. of lines in distributed program, including test data, etc.: 71 399No. of bytes in distributed program, including test data, etc.: 639 950Distribution format: tar.gzNature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur. Phys. J. C 23 (2002) 311]. This program implements some of the more significant ones, enabling the simulation of central particle production through color singlet exchange between interacting protons or antiprotons.Method of solution: The Monte Carlo method is used to simulate all elementary 2→2 and 2→1 processes available in HERWIG. The color singlet exchanges implemented in DPEMC are implemented as functions reweighting the photon flux already present in HERWIG.Restriction on the complexity of the problem: The program relying extensively on HERWIG, the limitations are the same as in [G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Comm. 67 (1992) 465; G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, B. Webber, JHEP 0101 (2001) 010].Typical running time: Approximate times on a 800 MHz Pentium III: 5-20 min per 10 000 unweighted events, depending on the process under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号