首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

2.
B2O3 mineralizes spinel formation from stoichiometric (1:1 mole ratio) calcined magnesia and alumina. After 3 h at 1100°C, X-ray diffraction (XRD) shows the mineralization effect of B2O3 is limited to 1.5 wt% additions with higher B2O3 contents leading to Mg3B2O6 formation and reduced spinel content. Boron nuclear magnetic resonance, electron probe microanalysis (EPMA), scanning electron microscopy, transmission electron microscopy (TEM) and XRD reveal formation of a boron-containing liquid. Energy dispersive spectroscopy in the TEM and EPMA of the glassy phases formed from solidification of the liquid reveal that initially it is Mg borate, later becoming a magnesia-modified boroaluminate, composition suggesting dissolution–precipitation as opposed to templated growth as the mechanism of this liquid phase mediated mineralization.  相似文献   

3.
Submicrometer SiO2-Al2O3 powders with compositions of 46.5 to 76.6 wt% Al2O3 were prepared by hydrolysis of mixed alkoxides. Phase change, mullite composition, and particle size of powders with heating were analyzed by DTA, XRD, IR, BET, and TEM. As-produced amorphous powders partially transformed to mullite and Al-Si spinel at around 980°C. The compositions of mullite produced at 1400° and 1550°C were richer in Al2O3 than the compositions of stable mullite solid solutions predicted from the phase diagram of the SiO2-Al2O3 system. Particle size decreased with increasing Al2O3 content. The sintered densities depended upon the amount of SiO2-rich glassy phase formed during sintering and the green density expressed as a function of particle size.  相似文献   

4.
A study of the solid solution of TiO2, Fe2O3, and Cr203 in mullite was made by measuring the changes in lattice parameters and unit-cell volume. Synthetic mullite (3O3-2SiO2) was reacted with up to 12 weight % of the oxides at temperatures ranging from 1000° to 17000C. The approximate minimum temperature required for the formation of solid solution was 12000C. for Fe203 and 1400°C. for Cr2O3 and TiO3. The maximum amount of solid solution found was 2 to 4% TiO2 at 1600°C., 10 to 12% Fe2Os at 1300°C., and 8 to 10% CrZO3 at 1600OC. Lattice parameters and unit-cell volumes for each solid solution series increased with increasing amounts of foreign oxide. There was good agreement between the calculated and observed increase in cell dimensions for the iron oxide series. Except in the case of titania, there was good agreement between X-ray data and petrographic observations.  相似文献   

5.
The cation diffusivities in the lattice and along dislocations and grain boundaries have been measured on sintered polycrysals of Cr2O3; and Cr2Cr2O3-0.09 wt% Y2O3 at1100°C and at the pO2 corresponding to that of Cr/Cr2O3 equilibrium at that temperature. Results for lattice and dislocation diffusivities in pure Cr2O3 are in good agreement with previous work. The present results indicate that yttrium additions have negligible effect on lattice and dislocation diffusion. However, grain-boundary diffusion in pure Cr2O3 is significantly slower than grain-boundary diffusion in Cr2O3-0.09 wt% Y2O3. The results are discussed in terms of their implications for the reactive-element effect in high-temperature oxidation of chromium-containing alloys.  相似文献   

6.
Densification of Calcia-Stabilized Zirconia with Borates   总被引:1,自引:0,他引:1  
Densification studies of submicrometer ZrO2 powders stabilized with 6.5 wt% CaO (CSZ) showed borate additions (1 to 10 wt%) to be effective sintering aids. Estimated densities >99% of theoretical were obtained on sintering at 1200°Cfor 4 h with 2 wt% B2O3 or 5 wt% CaO·2B2O3 additions to the CSZ powders. Average grain sizes obtained were typically <1 μm. Partial development of a monoclinic ZrO2 phase was observed in the sintered samples. The amount of this phase varied from ∼7 to 75 wt% and was approximately linearly dependent on the additive concentration. The effect was most marked for the B2O3 additions. Development of the monoclinic phase was attributed to progressive leaching of Ca from the CSZ phase by B2O3, in effect partially destabilizing the ZrO2.  相似文献   

7.
Thermal and X-ray studies show that there is complete solid solution between MgO.Cr2O3 and MgO.Al2O3 and that the spinel solid solutions are stable with no exsolution down to temperatures as low as 510°C. There is no solid solution of excess Cr2O3 in MgO.Cr2O3 nor of MgO.Cr2O3 in Cr2O3. The join MgO.Cr2O3–Al2O3 is found to be nonbinary; compositions along that join yield mixtures of a chromium oxide-alumina solid solution and a spinel solid solution on firing to temperatures high enough to promote solid-state reaction. Chromium oxide loss by volatilization increases at higher temperature. At a given temperature, chromium oxide loss is found to vary directly with the partial pressure of oxygen in the furnace atmosphere and with the ratio of MgO to SiO2 in the charges heated.  相似文献   

8.
The linear thermal expansion coefficients of cordierite glass-ceramics that have been doped with a fixed amount of P2O5 and 1, 2, and 3 wt% of B2O3 show negative expansion in the temperature range of 100°-300°C. The expansion of the undoped cordierite sample is positive. A relative decrease in the degree of negative expansion is observed as the B2O3 concentration increases. These negative expansion coefficients are similar to those of cordierite glass-ceramics that have been doped with the potassium cation.  相似文献   

9.
Refractory bodies of 65 wt% Al2O3 were prepared from a mixture of calcined alumina and raw kaolin with the addition of Cr2O3 up to 15 wt%. The Cr2O3 addition effectively enhances slag resistance and reduces mullite formation. Petrographic analysis of the refractories after the slag test suggests that Cr2O3 increases the viscosity of both the glassy phase in the refractory as well as the slag, thereby retarding slag penetration and reaction at elevated temperature.  相似文献   

10.
Lithium borate (Li2B4O7) and sodium borate (Na2B4O7) mineralize spinel formation from stoichiometric MgO and Al2O3 between 1000° and 1100°C. Mineralization with both compounds is shown to be mediated by B-containing liquids which form glass on cooling. However, the liquid compositions depend on the type of mineralizer and temperature, suggesting that templated grain growth or dissolution–precipitation mechanisms are operating, one dominating over the other under certain conditions. Na2B4O7-mineralized compositions show predominantly templated grain growth at 1000°C, which changes to dissolution–precipitation at 1100°C, whereas Li2B4O7-mineralized compositions show dissolution–precipitation from 1000°C. Li2B4O7 is a stronger mineralizer as spinel formation is complete with 3 wt% Li2B4O7 at 1000°C and with ≥1.5 wt% addition at 1100°C, whereas Na2B4O7-mineralized compositions are found to retain some unreacted corundum even at 1100°C.  相似文献   

11.
Viscosity and density data were obtained up to 1700°C for a series of binary aluminoborate melts that contained as much as 15 mole% (∼21 wt%) Al2O3 and up to 1620°C for pure molten B2O3. Large expansion coefficient decreases and a slight activation energy increase for B2O3 above 1400°C suggested a tightening of its structure. The addition of Al2O3 reduced viscosity and increased activation energy. The decreased compositional dependence of molar volume (compared to SiO2 additions) and the increased expansion coefficients accompanying Al2O3 additions suggested a loosening of the O—B—O structure at 1600°C. Molar volume deviations from ideality were similar to but smaller than those for SiO2 and GeO2 additions at 1300°C. Microclustering of aluminum-bearing polyhedra appeared to occur at slightly higher boron atom contents than with SiO2 and GeO2 additions.  相似文献   

12.
Mullite transformation kinetics of sol-gel-derived diphasic mullite gels doped with P2O5, TiO2, and B2O3 were studied using quantitative X-ray diffraction and differential thermal analysis (DTA). The mullite transformation temperature initially increased with P2O5 doping because of phase separation and formation of α-alumina and cristobalite. In TiO2-doped samples, the mullite transformation temperature decreased with TiO2 doping, and the transformation rate increased with decreasing TiO2 particle size. Kinetic studies showed that titania reduced the activation energy for both nucleation and growth relative to pure diphasic mullite gels by lowering the glass viscosity and/or enhancing the solid-state mass transport through lattice defects. B2O3 doping decreased the mullite transformation temperature and lowered the activation energy for both nucleation and growth but especially affected the mullite nucleation process, as indicated by the much smaller grain size.  相似文献   

13.
The dissolution of (Al, Cr)2O3 into CaO—MgO—Al2O3—SiO2 melts, under static and forced-convective conditions was investigated at 1550°C in air. With sufficient MgO in the melt, or sufficient Cr2O3 in (Al, Cr)2O3, a layer consisting of a spinel solid solution, Mg(Al, Cr)2O4, formed at the (Al, Cr)2O3/melt interface. The dissolution kinetics of 1.5 and 10 wt% Cr2O3 specimens were determined as a function of immersion time, specimen rotation rate, and magnesia content of the melt. Electron microprobe analysis was used to characterize concentration gradients in the (Al, Cr)2O3 sample, the Mg(Al, Cr)2O4 spinel, or in the melt after immersion of specimens containing 1.5 to 78 mol% Cr2O3. The dissolution kinetics and microprobe analyses indicated that a steady-state condition was reached during forced-convective, indirect (Al, Cr)2O3 dissolution such that spinel layer formation was rate limited by solid-state diffusion through the spinel layer and/or through the specimen, and spinel layer dissolution was rate limited by liquid-phase diffusion through a boundary layer in the melt. This is consistent with a model previously developed for the indirect dissolution of sapphire in CMAS melts.  相似文献   

14.
The mechanism of mullite crystallization in Al2O3-SiO2 glass fibers with compositions of 49 and 69 mass% Al2O3 was investigated using isothermal methods. The activation energies ( E a) of the nucleation and nucleation-growth of mullite were obtained from the temperature dependence of the incubation times and rate constants of mullite formation, respectively. The formation of mullite in both glasses occurred in two stages. The amount of mullite increased very steeply in the first stage within very short firing time, whereas the increase was more gradual in the second stage. The E a values for nucleation and nucleation-growth in the first stage were 864 and 1288 kJ/mol in the 49-mass%-Al2O3 glass fiber and 980 and 1138 kJ/mol in the 69-mass%-Al2O3 glass fiber, respectively. Arrhenius plots of the second-stage data showed that the slope ratios were different at temperatures below and above 1200°C. The E a values at <1200°C were 1195 and 1099 kJ/mol in the 49- and 69-mass%-Al2O3 glass fibers, whereas those at >1200°C were 696 and 645 kJ/mol, respectively. Observation of the microstructures and crystallite-size data indicates that the crystallization of mullite proceeds via three different mechanisms: nucleation, nucleation–growth, and coalescence of mullite grains.  相似文献   

15.
Several metal oxide additions were made to typical 99 and 96% alumina compositions to study their effect on the electrical conductivity of alumina from 500° to 1400°C. The metal oxide additions investigated were CO2O3, Cr2O3, CuO, Fe2O3, MnO2, NiO, and TiO2. Using a guarded two-probe technique, dc resistivities were measured on nonporous ceramic specimens. Additions of 0.5 to 2 mole % Co2O3, 2 mole % CuO, 1 mole % Fe2O3, or 2 mole % NiO to either a 96 or a 99% alumina composition increased the electrical resistivity. The addition of 1 mole % Cr2O3 to either a 96 or a 99% alumina showed practically no change in the resistivity. All changes in resistivity seemed to be structure dependent.  相似文献   

16.
Mechanical mixture of γ-Al2O3 and amorphous SiO2, and diphasic Al2O3/SiO2 gels of three different compositions were synthesized. They were subjected to heat treatment to various temperatures in the range 900°–1600°C. Qualitative X-ray diffraction data show that these diphasic gels do not crystallize to a combined mixture of θ-Al2O3 and α-Al2O3 polymorphs at the intermediate stage, prior to mullite formation. Estimated mullite formation data show that the course of its formation from mixed oxides was different from that of diphasic gels. Results are compared with previous findings and the concept of Al–Si spinel formation in the phase transformation of stoichiometric diphasic gel system is substantiated.  相似文献   

17.
The modulus of rupture of Al2O3-spinel castables containing 20 wt% Al2O3-rich MgO-Al2O3 spinel and 1.36-2.04 wt% CaO generally increases with an increase in both CaO content and temperature from 1300° to 1500°C, but it remains virtually constant from 1000° to 1300°C. Microscopic observation of the castable fired at 1500°C for 3 h reveals the growth of some CA6 crystals out of the Al2O3-rich spinel grains in the bonding matrix of the castable. The bond linkage between the CA6 and spinel grains in the matrix is believed to cause both the CaO content and temperature dependence of the hot strength of the Al2O3-spinel castables as well as the hot strength enhancement of high-Al2O3 castables with addition of Al2O3-rich spinel.  相似文献   

18.
Mixtures of zinc metatitanate and rutile (ZnTiO3+ x TiO2, where x = 0-0.5) have been prepared via the conventional mixed-oxide method. Centrifugal planetary milling with zirconia beads 1 mm in diameter produced very fine powders (mean particle size of 0.2 µm), which allowed the synthesis of ZnTiO3 and sintering at temperatures <945°C, which is the decomposition temperature of ZnTiO3. Sintering of the mixtures was enhanced further by the addition of B2O3. Densities of >94% of the theoretical density have been attained for the specimens that were sintered at 875°C for 4 h with B2O3 additions of <1 wt%. Microwave dielectric properties of the aforementioned compositions were as follows: dielectric constant of 29-31, normalized quality factor of 56000-69000 GHz, and a temperature coefficient of resonance frequency between -10 and +10 ppm/°C. Sintering was enhanced by the formation of a ZnO-B2O3 liquid phase, which affected the microwave properties, because of variation in the phase composition.  相似文献   

19.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

20.
Phase Transformation of Diphasic Aluminosilicate Gels   总被引:1,自引:0,他引:1  
Aluminosilicate gels with compositions Al2O2/SiO2 and 2 were prepared by gelling a mixture of colloidal pseudo-boehmite and a silica sol prepared from acid-hydrolyzed Si(OC2H5)4. Upon heating the pseudo-boehmite transforms to γ-Al2O3 around 400°C, then to δ-Al2O3 at 1050°C, and at 1200°C reacts with amorphous SiO2 to form mullite. Some twinned θ-Al2O3 forms before mullite. Nonstoichiometric specimens have a similar transformation sequence, but form mullite grains with inclusions of either Al2O3 or cristobalite, often associated with dislocation networks or micropores. Mullite grains are formed by nucleation and growth and have equiaxed shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号