首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene glycol) methacrylate (PEGMA) was introduced into a polyurethane (PU) solution in order to prepare electrospun scaffold with improving the biocompatibility by electrospinning technology for potential application as small diameter vascular scaffolds. Crosslinked electrospun PU/PEGMA hybrid nanofibers were fabricated by a reactive electrospinning process with N,N'-methylenebisacrylamide as crosslinker and benzophenone as photoinitiator. The photoinduced polymerization and crosslinking reaction took place simultaneously during the electrospinning process. The electrospinning solutions with various weight ratios of PU/PEGMA were successfully electrospun. No significant difference in the scaffold morphology was found by SEM when PEGMA content was <20 wt%. The crosslinked fibrous scaffolds of PU/PEGMA exhibited higher mechanical strength than the pure PU scaffold. The hydrophilicity of scaffolds was controlled by varying the PU/PEGMA weight ratio. The tissue compatibility of electrospun nanofibrous scaffolds were tested using human umbilical vein endothelial cells (HUVECs). Cell morphology and cell proliferation were measured by SEM, fluorescence microscopy and thiazolyl blue assay (MTT) after 1, 3, 7 days of culture. The results indicated that the cell morphology and proliferation on the crosslinked PU/PEGMA scaffolds were better than that on the pure PU scaffold. Furthermore, the appropriate hydrophilic surface with water contact angle in the range of 55-75° was favorable of improvement the HUVECs adhesion and proliferation. Cells seeded on the crosslinked PU/PEGMA (80/20) scaffolds infiltrated into the scaffolds after 7 days of growth. These results indicated the crosslinked electrospun PU/PEGMA nanofibrous scaffolds were potential substitutes for artificial vascular scaffolds.  相似文献   

2.
In this study, microfiber films were used as scaffolds for the purpose of vascular tissue engineering. The microfiber films were prepared by electrospinning of poly (l-lactide) (PLLA) and polyvinyl pyrrolidone (PVP). PLLA and PVP with different ratios were blended with dichloromethane as a spinning solvent at room temperature. The properties of the composite microfiber films were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and contact angle measurement. The SEM images showed that the morphology of the microfiber films was mainly affected by the weight ratios of PLLA/PVP. The DSC results demonstrated that PLLA and PVP mixed uniformly. And the hydrophilicity of the films measured increased along with the decrease of the PLLA/PVP ratio. Vascular smooth muscle cells (VSMCs) were used to test the cytocompatibility. Cell morphology and cell proliferation were measured by SEM, laser scanning confocal microscopy (LSCM) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay after 2, 4, 6 days of culture. The results indicated that the cell morphology and proliferation on the composite films were better than that on the pure PLLA film. Furthermore, morphology and proliferation of VSMCs became better with decreasing of the weight ratio of PLLA/PVP. In addition, adhesion of platelet on the films was observed by SEM. The SEM images showed that the number of adhered platelets decreased with increment of PVP content in the films. The electrospinning microfiber composite films of PLLA and PVP would have potential use as the scaffolds for vascular tissue engineering.  相似文献   

3.
Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-l-lactic acid/poly-(α,β)-dl-aspartic acid/Collagen (PLLA/PAA/Col I&III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p  0.05) in PLLA/PAA/Col I&III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I&III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I&III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues.  相似文献   

4.
Successful long term bone replacement and repair remain a challenge today. Nanotechnology has made it possible to alter materials?? characteristics and therefore possibly improve on the material itself. In this study, biphasic hydroxyapatite/??-tricalcium phosphate nanobioceramic scaffolds were prepared by the electrospinning technique in order to mimic the extracellular matrix. Scaffolds were characterised by scanning electron microscopy (SEM) and attenuated total reflectance?Cfourier transform infrared. Osteoblasts as well as monocytes that were differentiated into osteoclast-like cells, were cultured separately on the biphasic bioceramic scaffolds for up to 6?days and the proliferation, adhesion and cellular response were determined using lactate dehydrogenase cytotoxicity assay, nucleus and cytoskeleton dynamics, analysis of the cell cycle progression, measurement of the mitochondrial membrane potential and the detection of phosphatidylserine expression. SEM analysis of the biphasic bioceramic scaffolds revealed nanofibers spun in a mesh-like scaffold. Results indicate that the biphasic bioceramic electrospun scaffolds are biocompatible and have no significant negative effects on either osteoblasts or osteoclast-like cells in vitro.  相似文献   

5.
Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance.  相似文献   

6.
Developing three dimensional scaffolds mimicking the nanoscale structure of native extracellular matrix is a key parameter in tissue regeneration. In this study, we aimed to introduce a novel 3D structures composed of nanofibers (NF) and micro particles (MP) and compare their efficiency with 2D nanofibrous scaffold. The conventional nanofibrous PCL scaffolds are 2D mats fabricated by the electrospinning technique, whereas the NF/MP and patterned NF/MP PCL scaffolds are three dimensional structures fabricated by a modified electrospinning/electrospraying technique. The mentioned method was carried out by varying the electrospinning solution parameters and use of a metal mesh as the collector. Detailed fabrication process and morphological properties of the fabricated structures is discussed and porosity, pore size and PBS solution absorption value of the prepared structures are reported. Compared with the 2D structure, 3D scaffolds possessed enhanced porosity and pore size which led to the significant increase in their water uptake capacity. In vitro cell experiments were carried out on the prepared structures by the use of MG-63 osteosarcoma cell line. The fabricated 3D structures offered significantly increased cell attachment, spread and diffusion which were confirmed by SEM analysis. In vitro cytocompatibility assessed by MTT colorimetric assay indicated a continuous cell proliferation over 21 days on the innovative 3D structure, while on 2D mat cell proliferation stopped at early time points. Enhanced osteogenic differentiation of the seeded MG-63 cells on 3D scaffold was confirmed by the remarkable ALP activity together with increased and accelerated calcium deposition on this structure compared to 2D mat. Massive and well distributed bone minerals formed on patterned 3D structure were shown by EDX analysis. In comparison between NF/MP quasi-3D and Patterned NF/MP 3D scaffolds, patterned structures proceeded in all of the above properties. As such, the innovative Patterned NF/MP 3D scaffold could be considered as a proper bone graft substitute for bone tissue regeneration.  相似文献   

7.
Jia Xu 《Materials Letters》2009,63(8):658-660
The chitosan/PLA blend micro/nanofibers have been prepared for the first time by electrospinning. Trifluoroacetic acid (TFA) was found to be the co-solvent for electrospinning. The chitosan/PLA blend solutions in various ratios were studied for electrospinning into micro/nanofibers. The morphology of the fibers was shown by scanning electron microscope (SEM). It was found that the average diameter of the chitosan/PLA blend fibers became larger, and the morphology of the fibers became finer with the content of PLA increasing. To show the molecular interactions, chitosan/PLA fibers were characterized by Fourier transform infrared spectroscopy (FTIR). The spun micro/nanofibers are expected to be used in the native extracellular matrix for tissue engineering.  相似文献   

8.
Bombyx mori silk fibroin (SF) fiber mats were prepared by electrospinning with the solvent of hexafluoroisopropanol (HFIP) and formic acid (FA). The average diameters of SF fiber mats observed by SEM were 2.0 and 0.3 μm when different solvent, HFIP and FA, were used. Fourier transform infrared and X-ray diffraction were employed to study the secondary structure of the SF fiber mats; the results showed that the electrospin solvent not only affect the secondary structure of as-spun SF fiber mats, but also indirectly affect the structure transition of SF fiber mats post-treatment with ethanol. And the SF fiber mats electrospun with FA showed more β-sheet structure before and after ethanol treatment. The differential thermal analysis curve indicated that the solvent of HFIP or FA had a weak effect on the thermal properties of SF fiber mats. To assay the cytocompatibility and cell behavior on the SF fiber mats, cell attachment, spreading, and proliferation of normal human epidermal fibroblasts (NHEF) seeded on the scaffolds was studied. The results indicated that the SF fiber mats support NHEF attachment and growth on SF fiber mats in vitro, and no difference between the SF fiber mats electrospun with HFIP and FA was observed. In this article, a desired morphology and secondary structure of SF fiber mats could be prepared by choosing different electrospinning solvent.  相似文献   

9.
It is a severe challenge to construct 3D scaffolds which hold controllable pore structure and similar morphology of the natural extracellular matrix(ECM).In this study,a compound technology is proposed by combining the 3D bioprinting and electrospinning process to fabricate 3D scaffolds,which are composed by orthogonal array gel microfibers in a grid-like arrangement and intercalated by a nonwoven structure with randomly distributed polycaprolactone(PCL) nanofibers.Human adiposederived stem cells(hASCs) are seeded on the hierarchical scaffold and cultured 21 d for in vitro study.The results of cells culturing show that the microfibers structure with controlled pores can allow the easy entrance of cells and the efficient diffusion of nutrients,and the nanofiber webs layered in the scaffold can significantly improve initial cell attachment and proliferation.The present work demonstrates that the hierarchical PCL/gel scaffolds consisting of controllable 3D architecture with interconnected pores and biomimetic nanofiber structures resembling the ECM can be designed and fabricated by the combination of 3D bioprinting and electrospinning to improve biological performance in tissue engineering applications.  相似文献   

10.
Hualin Zhang 《Materials Letters》2009,63(27):2313-2316
Biomimetic mineralization is an effective method to improve the biocompatibility and bone inductivity of certain materials. In this study, composite scaffolds composed of poly(lactic-co-glycolic acid) (PLGA) and multi-walled carbon nanotubes (MWNTs) were prepared by electrospinning. Subsequently, the scaffolds were immersed in a simulated body fluid (1.5 × SBF) at 37 °C for 7, 14 and 21 days for biomimetic mineralization. Scanning electron microscopy, Raman spectroscopy, and X-ray diffraction were used for characterization. It was found that the electrospun scaffolds had extremely resemblant structural morphology to the natural extracellular matrix. After mineralization, apatite crystals were deposited on the PLGA/MWNTs composite scaffolds. The mineralized PLGA/MWNTs composites may be potentially useful in tissue engineering applications, particularly as scaffolds for bone tissue regeneration.  相似文献   

11.
Fiber scaffolds of bioactive polysialic acid have been prepared via electrospinning for peripheral nerve regeneration. The diameter, morphology and alignment of fibers in scaffolds were adjusted by variation of electrospinning parameters, which are decisive for the cell-scaffold interaction. Due to the high water solubility of polysialic acid (poly-α-2,8-N-acetylneuraminic acid) a photoactive derivative (poly-α-2,8-N-pentenoylneuraminic acid) was used to obtain stable fiber scaffolds in water by photochemical crosslinking. At the optimized fiber scaffolds good cell viability and directed cell proliferation along the fibers was achieved by cell tests with immortalized Schwann cells.  相似文献   

12.
静电纺制备的PLLA/PCL复合支架性能及细胞相容性   总被引:1,自引:0,他引:1  
利用静电纺丝技术制备了一系列不同比例的左旋聚乳酸/聚己内酯(PLLA/PCL)复合纳米纤维支架。通过扫描电镜、差热分析、宽角X射线衍射和接触角测试手段对支架结构与形态、结晶性能及亲水性进行了表征;采用在缓冲溶液中加酶的方式,研究了复合材料的降解性能;将体外培养的真皮成纤细胞接种至材料表面,用扫描电镜观察了成纤细胞在材料表面的生长情况。研究结果表明,电纺丝得到的复合支架纤维直径均一,且呈相互连通的多孔网状结构;脂肪酶的存在加速了支架材料的降解速度;成纤细胞在复合支架上具有良好的生长状态。  相似文献   

13.
In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

14.
The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels.  相似文献   

15.
Abstract

In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

16.
利用静电纺丝和模拟体液仿生矿化技术制备了聚乳酸-羟基乙酸共聚物/柞蚕丝素/羟基磷灰石((PLGA/TSF/HA)骨组织工程复合支架。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射测试(XRD)和热重分析(TG)对复合纳米纤维的形貌结构进行了表征。此外,在复合纳米纤维支架材料上接种人骨髓间充质干细胞(hMSCs),通过四甲基偶氮噻唑蓝比色(Four methyl azo thiazole blue colorimetric,MTT)法,观察细胞在材料表面的生长情况评价纳米纤维的生物相容性。结果显示,PLGA/TSF纳米纤维毡具有精细的三维结构,纤维直径分布均匀,表面光滑。矿化后HA颗粒均匀地分布在PLGA/TSF纳米纤维表面,矿物含量约占63%。与PLGA/TSF纳米纤维支架相比,PLGA/TSF/HA纳米纤维支架的亲水性、生物相容性都得到显著提高。  相似文献   

17.
Bioresorbable polylactides are one of the most important materials for tissue engineering applications. In this work we have prepared scaffolds based on the two optically pure stereoisomers: poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA). The crystalline structure and morphology were evaluated by DSC, AFM and X-ray diffraction. PLLA and PDLA crystallized in the α form and the equimolar PLLA/PDLA blend, crystallized in the stereocomplex form, were analyzed by a proliferation assay in contact with mouse L-929 and human fibroblasts and neonatal keratinocytes for in vitro cytotoxicity evaluation. SEM analysis was conducted to determine the cell morphology, spreading and adhesion when in contact with the different polymer surfaces. The preserved proliferation rate showed in MTT tests and the high colonization on the surface of polylactides observed by SEM denote that PLLA, PDLA and the equimolar PLLA/PDLA are useful biodegradable materials in which the crystalline characteristics can be tuned for specific biomedical applications.  相似文献   

18.
结合壳聚糖(CS)和聚己内酯(PCL)二者的优点, 以静电纺丝的方法制备了CS/PCL血管支架。采用SEM和电子万能试验机检测了该支架的结构和力学性能, 将内皮祖细胞(EPCs)与该支架膜复合培养, 评估了该血管支架维持细胞黏附、 繁殖和分化的能力。SEM结果显示: 通过静电纺丝可以得到多孔、 类似于天然细胞外基质的直径约400nm的纤维微结构; 当CS与PCL质量比为0.5时, 静电纺丝所制备的CS/PCL血管支架弹性最大形变达到31.64%, 应力-应变曲线显示其弹性变形能力较强; EPCs在CS/PCL血管支架黏附率可达95.1%, 荧光显微镜观察结果也显示了CS/PCL血管支架利于细胞黏附、 生长。   相似文献   

19.
Chitosan/Gelatin (CS:Gel) scaffolds were fabricated by chemical crosslinking with glutaraldehyde or genipin by freeze drying. Both crosslinked CS:Gel scaffold types with a mass ratio of 40:60% form a gel-like structure with interconnected pores. Dynamic rheological measurements provided similar values for the storage modulus and the loss modulus of the CS:Gel scaffolds when crosslinked with the same concentration of glutaraldehyde vs. genipin. Compared to genipin, the glutaraldehyde-crosslinked scaffolds supported strong adhesion and infiltration of pre-osteoblasts within the pores as well as survival and proliferation of both MC3T3-E1 pre-osteoblastic cells after 7 days in culture, and human bone marrow mesenchymal stem cells (BM-MSCs) after 14 days in culture. The levels of collagen secreted into the extracellular matrix by the pre-osteoblasts cultured for 4 and 7 days on the CS:Gel scaffolds, significantly increased when compared to the tissue culture polystyrene (TCPS) control surface. Human BM-MSCs attached and infiltrated within the pores of the CS:Gel scaffolds allowing for a significant increase of the osteogenic gene expression of RUNX2, ALP, and OSC. Histological data following implantation of a CS:Gel scaffold into a mouse femur demonstrated that the scaffolds support the formation of extracellular matrix, while fibroblasts surrounding the porous scaffold produce collagen with minimal inflammatory reaction. These results show the potential of CS:Gel scaffolds to support new tissue formation and thus provide a promising strategy for bone tissue engineering.  相似文献   

20.
Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation.In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues.At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral scaffolds pre-cultured with Schwann cells, in bioreactors could potentially shorten the time needed for grafts for peripheral nerve regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号