首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schenk M  Seeger T  Leipertz A 《Applied optics》2005,44(19):4157-4165
Broadband and dual-broadband coherent anti-Stokes Raman scattering (CARS) are widely established tools for nonintrusive gas diagnostics. Up to now the investigations have been mainly performed for electronic nonresonant conditions of the gas species of interest. We report on the enhancement of the O2-N2 detection limit of dual-broadband pure rotational CARS by shifting the wavelength of the narrowband pump laser from the commonly used 532-266 nm. This enhancement is caused when the Schumann-Runge absorption band is approached near 176 nm. The principal concept of this experiment, i.e., covering the Raman resonance with a single- or dual-broadband combination of lasers in the visible range and moving only the narrowband probe laser near or directly into electronic resonant conditions in the UV range, should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects for the purpose of single-shot concentration measurements of minority species. To quantify the enhancement in O2 sensitivity, comparative measurements at both a 266 and a 532 nm narrowband pump laser wavelength are presented, employing a 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram (DCM) dye laser as a broadband laser source at 635 nm. An increase of approximately equal to 13% in the ratio of the rotational CARS cross sections of O2 and N2 was obtained. The broad spectral width of the CARS excitation profile was approximately equal for both setups. Further enhancement should be achievable by shifting the narrowband pump laser closer toward 176 nm, for example, with a frequency-doubled optical parametric oscillator or an excimer laser. The principal concept of this experiment should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects of the narrowband pump laser with electronic transitions of minority species for the purpose of single-shot concentration measurements of those species.  相似文献   

2.
Jurna M  Herek JL  Offerhaus HL 《Applied optics》2011,50(13):1839-1842
Detection of molecules using vibrational resonances in the fingerprint region for narrowband coherent anti-Stokes Raman scattering (CARS) is challenging. The spectrum is highly congested resulting in a large background and a reduced specificity. Recently we introduced vibrational phase contrast CARS (VPC-CARS) microscopy as a technique capable of detecting both the amplitude and phase of the CARS signal, providing background-free images and high specificity. In this paper we present a new implementation of VPC-CARS based on a third-order cascaded phase-preserving chain, where the CARS signal is generated at a single (constant) wavelength independent of the vibrational frequency that is addressed. This implementation will simplify the detection side considerably.  相似文献   

3.
The noise in single-shot coherent anti-Stokes Raman (CARS) spectroscopy that employs a broadband modeless dye laser (MDL) is examined and the results are compared with those of a conventional dye laser. The noise of the dye-laser, the nonresonant CARS, and the resonant N(2) CARS signals are determined. The use of a MDL is shown to result in substantially reduced CARS noise when the CARS signal is generated with a single-mode pump laser, but only a marginal reduction of noise is observed with a multimode pump source The noise measurements are compared with theoretical predictions that are based on models that assume modes of random amplitudes and phases in the multimode laser sources. The combination of a MDL and a single-mode pump laser is shown to increase the precision of single-shot N(2) CARS temperature measurements.  相似文献   

4.
The accuracy of temperature and simultaneous relative N(2) -O(2) concentration measurements of accumulated as well as of single-pulse rotational coherent anti-Stokes Raman spectra has been investigated in air in the temperature range from 300 to 2050 K. The experimental spectra were taken in a high-temperature oven at atmospheric pressure for a constant oxygen concentration of 20.9% (air). The evaluation procedure is based on the energy-corrected sudden-power scaling law. The agreement of the thermocouple readings with the mean values of the evaluated coherent anti-Stokes Raman spectroscopy temperatures is higher than 50 K and independent of the temperature. The evaluated oxygen concentration is found to be in the range from 20.0 to 21.7% and is also independent of the temperature.  相似文献   

5.
Coherent anti-Stokes Raman scattering (CARS) microscopy with high sensitivity and high three- dimensional resolution has been developed for the vibrational imaging of chemical species. Due to the coherent nature of the CARS emission, it has been reported that the detection of epi-CARS and forward-CARS (F-CARS) signals depends on the size and shape of the sample. We investigate theoretically and experimentally the effects on the CARS signal of refractive index mismatches between the sample and its surroundings. Backward-CARS and F-CARS signals are measured for different polystyrene bead diameters embedded in different refractive index solvents. We show that index mismatches result in a backward-reflected F-CARS signal that generally dominates the experimentally backward-detected signal. Simulations based on geometrical and wave optics comparing forward- and backward-detected signals for polystyrene beads embedded in different index solvents confirm our findings. Furthermore, we demonstrate that the maxima of forward- and backward-detected signals are generated at different positions along the optical axis in the sample if refractive index mismatches are present between the sample and its surroundings.  相似文献   

6.
Schenk M  Seeger T  Leipertz A 《Applied optics》2005,44(31):6526-6536
Pure rotational coherent anti-Stokes Raman scattering measurements of pure CO2 have been performed in a temperature range from 300 to 773 K and for pressure from 0.1 to 5 MPa for the purpose of time-resolved CO2 thermometry. Particular emphasis was put on the comparison of several line-width approximations to model the experimental spectra. Generally good agreement of the temperature mean values with the thermocouple reference has been found for all models over almost the whole pressure and temperature range investigated. The standard deviations, which increased with temperature, were comparable with or better than the results gained for single-shot measurements of pure N2 or O2-N2 mixtures. Yet for high particle densities close to the critical point of CO2 the limitation of the models became obvious, owing to the strongly increased influence of motional narrowing effects. The characteristics of these effects have been demonstrated by measurements even closer to the critical conditions.  相似文献   

7.
The three-dimensional coherent transfer function of confocal coherent anti-Stokes Raman scattering microscopy was derived theoretically. The three-dimensional optical transfer function was also derived under the weak-contrast assumption. The effect of a pinhole in front of the detector on the optical transfer function was estimated, and it was found that the cutoff frequency of the optical transfer function is independent of the pinhole. Micrometer-order spatial resolution along the optical axis was also experimentally demonstrated.  相似文献   

8.
We have performed high-resolution N2 coherent anti-Stokes Raman spectroscopy (CARS) measurements using a modeless dye laser (MDL) as the Stokes beam source to determine the effects of a reduction in mode noise on the accuracy and precision of the method. These results are compared with previous research that employed a conventional broadband dye laser (CBDL) as the Stokes beam source. A new spectral-fitting procedure was developed to avoid starting-point bias in the least-squares fitting results, which possibly had altered the previous measurements. Single-shot measurements of pressure were performed in a static-pressure vessel over the range of 0.1-4.0 atm to examine the pressure sensitivity of the technique. The precision of these measurements is a measure of the baseline noise level of the system, which sets the detection limit for flow-field pressure fluctuations. Centerline measurements of pressure and temperature in an underexpanded jet (Mj = 1.85) were also used to determine the performance of the technique in a compressible flow field. Our study represents the first known application, to our knowledge, of a MDL CARS system in a low-temperature, low-pressure supersonic environment. Improvements in accuracy for mean single-shot measurements and increased precision were found for pressure vessel conditions above 1.0 atm. For subatmospheric pressure vessel conditions (0.1-1.0 atm) and the underexpanded jet measurements, there was a decrease in accuracy and precision compared with the CBDL results. A comparison with the CBDL study is included, along with a discussion of the MDL system behavior.  相似文献   

9.
A novel technique for coherent anti-Stokes Raman spectroscopy (CARS) measurements in multiple points is presented. In a multipass cavity the pump and Stokes laser beams are multiply reflected and refocused into a measurement volume with an adjustable number of separated points along a line. This optical arrangement was used in a vibrational CARS setup with planar BOXCARS phase-matching configuration. The CARS spectra from spatially separated points were recorded at different heights on a CCD camera. Measurements of temperature profiles were carried out in the burned gas zone of a premixed one-dimensional flame to demonstrate the applicability of this method for temperature measurements in high-temperature regions. The ability to measure in flames with strong density gradients was demonstrated by simultaneous measurements of Q-branch spectra of N2 and CO in a Wolfhard-Parker burner flame. Interference phenomena found in multipoint spectra are discussed, and possible solutions are proposed. Merits and limitations of the technique are discussed.  相似文献   

10.
We present a model for quantitative measurements in binary mixtures of nitrogen and carbon monoxide by the use of dual-broadband rotational coherent anti-Stokes Raman spectroscopy. The model has been compared with experimental rotational coherent anti-Stokes Raman scattering spectra recorded within the temperature range of 294-702 K. Temperatures and concentrations were evaluated by spectral fits using libraries of theoretically calculated spectra. The relative error of the temperature measurements was 1-2%, and the absolute error of the CO concentration measurements was <0.5% for temperatures < or =600 K. For higher temperatures, the gas composition was not chemically stable, and we observed a conversion of CO to CO2. The influence of important spectroscopic parameters such as the anisotropic polarizability and Raman line-broadening coefficients are discussed in terms of concentration measurements. In particular, it is shown that the CO concentration measurement was more accurate if N2-CO and CO-N2 line-broadening coefficients were included in the calculation. The applicability of the model for quantitative flame measurements is demonstrated by measuring CO concentrations in ethylene/air flames.  相似文献   

11.
Weikl MC  Beyrau F  Leipertz A 《Applied optics》2006,45(15):3646-3651
Pure rotational coherent anti-Stokes Raman spectroscopy was used for the simultaneous determination of temperature and exhaust-gas recirculation in a homogeneous charge-compression ignition engine. Measurements were performed in a production-line four-cylinder gasoline engine operated with standard gasoline fuel through small optical line-of-sight accesses. The homogenization process of fresh intake air with recirculated exhaust gas was observed during the compression stroke, and the effect of charge temperature on combustion timing is shown. Single-pulse coherent anti-Stokes Raman spectroscopy spectra could not only be taken in the compression stroke but also during the gas-exchange cycle and after combustion. Consequently, the used method has been shown to be suitable for the investigation of two of the key parameters for self-ignition, namely temperature and charge composition.  相似文献   

12.
Schenk M  Seeger T  Leipertz A 《Applied optics》2000,39(36):6918-6925
Dual-broadband pure rotational coherent anti-Stokes Raman scattering is a valuable nonintrusive tool for gas diagnosis that provides simultaneous and time-resolved information about temperature and relative species concentration. A systematic investigation of single-shot precision and accuracy of simultaneous measurement of temperature and O(2)/N(2) concentration is presented. Various O(2) concentrations (1.0-15.6%) in binary mixtures with N(2) have been investigated in a temperature range from 300 to 773 K and for pressures of 1-50 bars (0.1-5 MPa). A comparison of two least-sum-squared differences fit evaluation procedures for the spectral shape, weighted constantly or inversely with respect to the relative signal intensity, is given. The results yielded good accuracy and precision for measuring temperature as well as concentration. The influence of temperature, O(2) concentration, pressure, and evaluation techniques on both accuracy and precision is discussed.  相似文献   

13.
The potential of measuring temperature and multiple species concentrations (N2, O2, CO) by use of combined vibrational coherent anti-Stokes Raman spectroscopy (CARS) and pure rotational CARS has been investigated. This was achieved with only one Nd:YAG laser and one dye laser together with a single spectrograph and CCD camera. From measurements in premixed sooting C2H4-air flames it was possible to evaluate temperatures from both vibrational CARS and rotational CARS spectra, O2 concentration from the rotational CARS spectra, and CO concentration from the vibrational CARS spectra. Quantitative results from premixed sooting C2H4-air flames are presented, and the uncertainties in the results as well as the possibility of extending the combined CARS technique for probing of additional species are discussed.  相似文献   

14.
Meyer TR  Roy S  Gord JR 《Applied spectroscopy》2007,61(11):1135-1140
There is growing interest in the use of short-pulse lasers for coherent anti-Stokes Raman scattering (CARS) to minimize non-resonant background (NRB) contributions in a variety of applications. Using time-coincident picosecond (ps) pump and Stokes beams and a time-delayed ps probe beam, we show that a three orders of magnitude reduction in NRB interference can be achieved in rich hydrocarbon-air flames while preserving 60% to 80% of the CARS signal. This represents a significant improvement in signal-to-interference ratio compared with previous measurements in room temperature air and is attributable to reduced rates of collisional dephasing and relaxation at flame temperatures. Measurements within the flame zone of a laminar flat-flame burner are used to investigate the characteristics of time-coincident and probe-delayed broadband ps N(2)-CARS spectra for C(2)H(4)-air equivalence ratios of 0.5 to 1.2. Up to three ro-vibrational bands of N(2) are excited with each laser shot using 135 ps pump and 106 ps Stokes beams, and the CARS signal is generated using a 135 ps probe beam delayed by 165 ps. The enhanced signal-to-interference ratio achieved in the current work is one to two orders of magnitude higher than that previously achieved using polarization-selection techniques without sensitivity to the effects of birefringence caused by density gradients or test cell windows. Moreover, the use of a 135 ps laser source in this study enables frequency domain "broadband" CARS with sufficient resolution to extract ro-vibrational spectral features under various flame conditions. The effect of probe delay and NRB suppression on characteristics of these broadband CARS spectra are investigated, and evidence of preferential collisional dephasing and relaxation of different ro-vibrational transitions is not detected. This is a promising but preliminary result to be investigated further in future work.  相似文献   

15.
Optical parametric oscillators (OPO's) provide low-maintenance solid-state alternatives to dye lasers. We present results from use of a nearly degenerate broadband OPO for multiplex coherent anti-Stokes Raman spectroscopy. The system described is capable of generating spectra that cover a range of approximately 1000 cm(-1).  相似文献   

16.
Visualization of three-dimensional distribution of drug molecules and subsequent changes during the release process is critical for understanding drug delivery mechanisms as well as designing tailor-made release profiles. This study utilized coherent anti-Stokes Raman scattering (CARS) imaging to examine paclitaxel distribution in various polymer films with lateral resolution of 0.3 microm and depth resolution of 0.9 microm. Raman bands in the CH stretch vibration and fingerprint regions were used to distinguish paclitaxel from the polymers. The detection sensitivity was measured to be 29 mM by imaging paclitaxel molecules dissolved in N,N-dimethylformamide solution. Release of paclitaxel from a polymer matrix was monitored at an acquisition speed of 1 frame/s. Our results show that CARS microscopy can be used effectively for in situ imaging of native drug molecules in a delivery system.  相似文献   

17.
We report the development and application of a simple theoretical model for extracting temperatures from picosecond-laser-based coherent anti-Stokes Raman scattering (CARS) spectra of H2 obtained using time-delayed probe pulses. This approach addresses the challenges associated with the effects of rotational-level-dependent decay lifetimes on time-delayed probing for CARS thermometry. A simple procedure is presented for accurate temperature determination based on a Boltzmann distribution using delayed-probe-pulse vibrational CARS spectra of H2; this procedure requires measurement at only a select handful of probe-pulse delays and requires no assumptions about sample environment.  相似文献   

18.
We analyze the optical resolution of Fourier transform spectral interferometric-coherent anti-Stokes Raman scattering microscopy, which extracts the complex amplitude of an image by using a spectral interferometric effect. Image-formation formulas are presented that describe the properties of the image observed by the apparatus. The image-formation properties represented by the coherent transfer function are different depending on the mode (transmission, reflection, etc.) of the microscopy.  相似文献   

19.
The accuracy and precision of time-resolved simultaneous temperature and O(2)-concentration measurements in binary N(2)-O(2) mixtures by single-pulse dual-broadband pure rotational coherent anti-Stokes Raman scattering (CARS) have been investigated. We present a detailed comparison of the applicability of six evaluation procedures to measurements of air in a temperature range 300-2050 K. Special emphasis is put on the dependence of the results on experimental restrictions and distortions. This comparison includes the least-sum-of-squared-differences fit (LSF) in the frequency space obtained by use of three different kinds of weighting with respect to signal intensity and in Fourier space by use of the complex or the cosine Fourier transformation, both of which permit a great reduction in the number of data points necessary for multidimensional evaluation. Additionally, a cross-correlation technique is tested that, to the best of our knowledge, was not previously applied to pure rotational CARS. We also present the results of measurements directed to the determination of low O(2)-concentration levels that were performed for various binary mixtures (1.0-15.6% O(2)) and for natural air within a temperature range of 300-773 K. A comparison is given for the three evaluation techniques that have proved most promising for the high-temperature investigations, i.e., the constant and the inverse weighted LSF in frequency space and the Fourier analysis technique.  相似文献   

20.
Dual-pump coherent anti-Stokes Raman scattering (CARS) has been demonstrated for the simultaneous measurement of gas-phase temperature and concentrations of molecular nitrogen and oxygen. A polarization technique was used to vary the relative intensities of the two CARS signals and expand the dynamic range of the relative concentration measurements. Detailed temperature and oxygen mole fraction measurements were performed in the stabilization region of a hydrogen-nitrogen jet diffusion flame. These results indicate that there is a region below the nozzle exit where significant amounts of oxygen are found on the fuel side of the peak flame temperature profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号