首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier-transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(2) lines with temperature-insensitive strengths by measuring the slant-column CO(2) amount and by adjusting the viewing geometry until the calculated column matches the observed column. Tangent pressures are determined with a spectroscopic precision of l%-3%, corresponding to a tangent-point height precision of 70-210 m. The total uncertainty is limited primarily by the quality of the spectra and ranges between 4% and 6% (280-420 m) for spectra with signal-to-noise ratios of 300:1 and between 4% and 10% for spectra with signal-to-noise ratios of 100:1. The retrieval of atmospheric pressure increases the accuracy of the retrieved-gas concentrations by minimizing the effect of systematic errors introduced by climatological pressure data, ephemeris parameters, and the uncertainties in instrumental pointing.  相似文献   

2.
3.
The methodology of spectroscopic remote sensing with high-resolution Fourier-transform spectra obtained from low Earth orbit by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment is discussed. During the course of the Atmospheric Laboratory for Applications and Science (ATLAS) shuttle missions (1992-1994) a flexible, yet reproducible, retrieval strategy was developed that culminated in the near-real-time processing of telemetry data into vertical profiles of atmospheric composition during the ATLAS-3 mission. The development, evolution, robustness, and validation of the measurements are presented and assessed with a summary comparison of trace-gas observations within the Antarctic polar vortex in November 1994.  相似文献   

4.
Kleinert A 《Applied optics》2006,45(3):425-431
The detectors used in the cryogenic limb-emission sounder MIPAS-B2 (Michelson Interferometer for Passive Atmospheric Sounding) show a nonlinear response, which leads to radiometric errors in the calibrated spectra if the nonlinearity is not taken into account. In the case of emission measurements, the dominant error that arises from the nonlinearity is the changing detector responsivity as the incident photon load changes. The effect of the distortion of a single interferogram can be neglected. A method to characterize the variable responsivity and to correct for this effect is proposed. Furthermore, a detailed error estimation is presented.  相似文献   

5.
Oshchepkov S  Sasano Y  Yokota T 《Applied optics》2002,41(21):4234-4244
This study concerns the development of a new inversion method for simultaneous gas and aerosol retrievals in the upper layers of the atmosphere from limb-viewing multiwavelength-transmission infrared measurements. In this method, concentrations of gas species such as O3, NO2, HNO3, N2O, CH4, and H2O, and spectral dependences of the aerosol extinction coefficient are retrieved simultaneously. When this is done, smoothness constraints on the desired spectral dependencies of the aerosol extinction coefficient are used as an a priori assumption. The method is used in the treating of synthetic transmission spectra of the Improved Limb Atmospheric Spectrometer, which is based on the solar occultation technique and was on board the Advanced Earth Observing Satellite. A set of numerical tests shows the efficiency of the method.  相似文献   

6.
An inversion method for the characterization of atmospheric condensed phases from infrared (IR) spectra is described. The method is tested with both synthetic IR spectra and the spectra of particles that flow in a cryogenic flow tube. The method is applied to the IR spectra recorded by the Atmospheric Trace Molecule Spectroscopy instrument carried by the Space Shuttle during three missions in 1992, 1993, and 1994. The volume density and particle size distribution for sulfate aerosol are obtained as a function of altitude. The density and size distribution of ice particles in several cirrus clouds are also retrieved. The probable radius of the ice particles in the high-altitude (10-15-km) cirrus clouds is found to be approximately 6-7 microm.  相似文献   

7.
Piezoelectric photothermal spectroscopy has been used for measurements of the optical and thermal parameters of semiconductors. The investigated crystals were grown by the high-pressure Bridgman method under argon overpressure. The obtained photoacoustic (PA) spectra show the complexity of the effects observed for the different groups of selected A2B6 crystals. These effects comprise ideal samples and samples with damaged surfaces. The spectra show the influence of the surface treatment on the PA amplitude and phase spectra.  相似文献   

8.
The design and characterization of stable, low-noise crystal controlled VHF oscillators are described. Operating in the 60 MHz to 80 MHz frequency range, these oscillators have shown total rms frequency deviations of less than 4 parts per 1010 in a 5 kHz band. Noise characteristics have been determined from power spectra measurements, FM noise measurements, and phase noise measurements. The equivalent noise sideband power spectra corresponding to each method of measurement were calculated and compared to the spectra predicted by a very simple model of the oscillator circuit. Agreement within a few dB was found for the region within about 500 Hz of carrier frequency, but measured noise power was found to be considerably higher than predicted for higher baseband frequencies in the range from 800 Hz to 5 kHz. Measurement techniques and evaluation of data are presented.  相似文献   

9.
Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra.  相似文献   

10.
Several atmospheric lidar techniques rely on the exact knowledge of the spectral line shape of molecular scattered light in air, which, however, has not been accurately measured in real atmosphere up to now. In this paper we report on the investigation of spontaneous Rayleigh-Brillouin scattering within the atmosphere, utilizing horizontal lidar measurements (λ=355 nm, θ=180°) performed from the mountain observatory Schneefernerhaus (2650?m), located below Germany's highest mountain, the Zugspitze. These lidar measurements give proof of the effect of Brillouin scattering within the atmosphere for the first time to our knowledge. The measurements confirm that the Tenti S6 model can be used to adequately describe spontaneous Rayleigh-Brillouin spectra of light scattered in air under real atmospheric conditions. The presented results are of relevance for spectrally resolving lidars like those deployed on the Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) andthe Earth Clouds, Aerosols, and Radiation Explorer Mission (EarthCARE).  相似文献   

11.
Transient phase change crystallization process of SiSb phase change thin films under the irradiation of picosecond (ps) laser pulse was studied using time-resolved reflectivity measurements. The ps laser pulse-crystallized domains were characterized by atomic force microscope, Raman spectra and ellipsometrical spectra measurements. A reflectivity contrast of about 15% can be achieved by ps laser pulse-induced crystallization. A minimum crystallization time of 11 ns was achieved by a low-fluence single ps laser pulse after pre-irradiation. SiSb was shown to be very promising for fast phase change memory applications.  相似文献   

12.
污染气体红外光谱仿真及参数设置研究   总被引:3,自引:0,他引:3  
利用红外辐射传输理论,阐述了污染气体红外光谱仿真的基本模型,提出了在已知背景光谱和干扰物光谱的情况下进行污染气体红外光谱仿真的方法。仿真结果与实测光谱进行了验证比较,说明了仿真方法的可行性。研究了大气温度及浓度程长积等参数设置对仿真光谱的影响,通过大气温度对仿真光谱的影响研究解释了特征峰消失和反转现象;通过浓度程长积对仿真光谱研究解释了饱和现象。本文的方法可以应用于各种污染气体的光谱仿真、探测和识别。  相似文献   

13.
Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra.  相似文献   

14.
Zasetsky AY  Sloan JJ 《Applied optics》2005,44(22):4785-4790
We describe an inversion method for determining the composition, density, and size of stratospheric clouds and aerosols by satellite remote sensing. The method, which combines linear least-squares minimization and Monte Carlo techniques, is tested with pure synthetic IR spectra. The synthetic spectral data are constructed to mimic mid-IR spectra recorded by the Improved Limb Atmospheric Spectrometer (ILAS-I and ILAS-II) instruments, which operate in the solar occultation mode and record numerous polar stratospheric cloud events. The advantages and limitations of the proposed technique are discussed. In brief we find that stratospheric aerosol in the size range from 0.5 to 4.0 02114 microm can be retrieved to an accuracy of 30%. We also show that the chemical composition of common stratospheric aerosols can be determined, whereas identification of their phases from mid-IR satellite remote-sensing data alone appears to be questionable.  相似文献   

15.
Scintillation effects are not negligible in the stratosphere. We present a model based on a 3D model of anisotropic and isotropic refractive index fluctuations spectra that predicts scintillation rates within the so-called small perturbation approximation. Atmospheric observations of stellar scintillation made from the AMON-RA (AMON, Absorption par les Minoritaires Ozone et NO(x); RA, rapid) balloon-borne spectrometer allows us to remotely probe wave-turbulence characteristics in the stratosphere. Data reduction from these observations brings out values of the inner scale of the anisotropic spectrum. We find metric values of the inner scale that are compatible with space-based measurements. We find a major contribution of the anisotropic spectrum relative to the isotropic contribution. When the sight line plunges into the atmosphere, strong scintillation occurs as well as coupled chromatic refraction effects.  相似文献   

16.
Stramski D  Piskozub J 《Applied optics》2003,42(18):3634-3646
We present an approach based on three-dimensional Monte Carlo radiative transfer simulations for estimating scattering error in measurements of light absorption by aquatic particles with a typical laboratory double-beam spectrophotometer. The scattering error is calculated by combining the weighting function describing the angular distribution of photon losses that are due to scattering on suspended particles with the volume scattering function of particles. We applied this method to absorption measurements made on marine phytoplankton, a diatom Thalassiosira pseudonana and a cyanobacterium Synechococcus. Assuming that the scattering phase function is described by the Henyey-Greenstein formula, we determined the backscatter probability of phytoplankton, which yields the best correction for scattering error at a light wavelength of 750 nm, where true absorption is null. The backscattering ratio estimated for both phytoplankton species is significantly higher than previously reported data based on Mie-scattering calculations for homogeneous spheres. Depending on the type of particles, the corrected absorption spectra obtained with our method may be similar or significantly different from spectra obtained with the null-point correction based on wavelength-independent scattering error.  相似文献   

17.
Ho SP  Smith WL  Huang HL 《Applied optics》2002,41(20):4057-4069
A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)].  相似文献   

18.
Chance K  Kurosu TP  Sioris CE 《Applied optics》2005,44(7):1296-1304
Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modern satellite spectrometers, which include the Global Ozone Monitoring Experiment, Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite. The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.  相似文献   

19.
Xu L  Zhang J 《Applied optics》1995,34(15):2724-2736
Improved ray-optics theory and Mie theory for single scattering and an adding-doubling method for multiple scattering have been used to study the interaction of radiation in NASA's Visible and Infrared Spin-Scan Radiometer Atmospheric Sounder Satellite (VAS) IR channels and the microphysics of inhomogeneous cirrus clouds. The simulation study shows that crystal shape has remarkable effects on scattering and on the radiative-transfer properties of cirrus clouds in IR spectra. The sensitivity of the brightness temperature, as observed with VAS-IR channels, to the hexagonal columns and plates in cirrus clouds is noticeable. A method that permits one to infer the optical thickness, crystal shape, ice-water content,and emittance of cirrus clouds by using a multi-IR window channel with a scanning observation technique is developed. Detailed error analyses are carried out, and the characteristics of VAS-IR window channels are investigated through the examination of the effects of sea-surface reflection and variations in the temperature and water-vapor profiles on the VAS measurements. It is shown that these effects are large and need to be considered. Some uncertainties that have risen from the theoretical model are studied; they demonstrate that the Mie-scattering theory should not be used to retrieve the microphysical and optical properties of cirrus clouds. A suitable cloud-microphysics model and a suitable scattering model are needed instead.  相似文献   

20.
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号