首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intensity and polarization of light scattered from marine aerosols affect visibility and contrast in the marine atmospheric boundary layer (MABL). The polarization properties of scattered light in the MABL vary with size, refractive index, number distributions, and environmental conditions. Laboratory measurements were used to determine the characteristics and variability of the polarization of light scattered by aerosols similar to those in the MABL. Scattering from laboratory-generated sea-salt-containing (SSC) [NaCl, (NH(4))(2) SO(4), and seawater] components of marine aerosols was measured with a scanning polarization-modulated nephelometer. Mie theory with Gaussian and log normal size distributions of spheres was used to calculate the polarized light scattering from various aerosol composition models and from experimentally determined distributions of aerosols in the marine boundary layer. The modeling was verified by comparison with scattering from distilled water aerosols. The study suggests that polarimetric techniques can be used to enhance techniques for improving visibility and remote imaging for various aerosol types, Sun angles, and viewing conditions.  相似文献   

2.
The size distribution of semitransparent irregularly shaped mineral dust aerosol samples is determined using a commonly used laser particle-sizing technique. The size distribution is derived from intensity measurements of singly scattered light at various scattering angles close to the forward-scattering direction at a wavelength of 632.8 nm. We analyze the results based on various light-scattering models including diffraction theory, Mie calculations for spheres with various refractive indices, and T-matrix calculations for spheroidal particles. We identify systematic errors of the retrieved size distribution when the semitransparent and nonspherical properties of the particles are neglected. Synthetic light-scattering data for a variety of parameterized size distributions of spheres and spheroids are used to investigate the effect of simplifying assumptions made when the diffraction model or Mie theory is applied in the retrieval.  相似文献   

3.
Wu X  Grehan G  Cen K  Ren KF  Wang Q  Luo Z  Fang M 《Applied optics》2007,46(36):8600-8608
A near backscattered laser Doppler system was presented to carry out velocity and size distribution measurements for irregular particles in two-phase flows. The technique uses amplitudes of particles Doppler signals to estimate the particle size distribution in a statistical manner. Holve's numerical inversion scheme is employed to unfold the dependence of the scattered signals on both particle trajectory and orientation through the measurement volume. The performance and error level of the technique were simulated, and several parameters including the number of particle samples, the fluctuation of irregular particle response function, inversion algorithms, and types of particle size distribution were extensively investigated. The results show that the size distributions for those irregular particles even with strong fluctuations in response function can be successfully reconstructed with an acceptable error level using a Phillips-Twomey-non-negative least-squares algorithm instead of a non-negative least-squares one. The measurement system was then further experimentally verified with irregular quartz sands. Using inversion matrix obtained from the calibration experiment, the average measurement error for the mixing quartz sands with a size range of 200-560 microm are found to be about 23.3%, which shows the reliability of the technique and the potential for it to be applied to industrial measurement.  相似文献   

4.
An algorithm is presented based on an evolution strategy to retrieve a particle size distribution from angular light-scattering data. The analyzed intensity patterns are generated using the Mie theory, and the algorithm retrieves a series of known normal, gamma, and lognormal distributions by using the Fraunhofer approximation. The distributions scan the interval of modal size parameters 100 < or = alpha < or = 150. The numerical results show that the evolution strategy can be successfully applied to solve this kind of inverse problem, obtaining a more accurate solution than, for example, the Chin-Shifrin inversion method, and avoiding the use of a priori information concerning the domain of the distribution, commonly necessary for reconstructing the particle size distribution when this analytical inversion method is used.  相似文献   

5.
A new method is proposed to derive the optical properties and size distribution of aerosol in an air column from simultaneous measurements of the backscattering coefficient, the optical thickness, and the solar aureole intensity with lidar, a sunphotometer, and an aureolemeter. Inasmuch as the backscattering properties and the optical thickness depend on both the complex refractive index and the size distribution, whereas the forward-scattering properties depend mainly on the size distribution, real and imaginary indices of refraction and size distributions of aerosol are retrieved from these measurements. The real and the imaginary parts of the complex refractive index of an aerosol at a wavelength of 500 nm during the period from November 1991 to March 1992 obtained in Tsukuba, Japan, were estimated to be 1.46-1.48 and 0.005-0.014, respectively. It is inferred from the size distribution and an optical thickness fraction of stratospheric aerosols in the total columnar aerosols that these results reflect the influences of stratospheric aerosols that originated from the Mt. Pinatubo eruption.  相似文献   

6.
7.
Wang J  Hallett FR 《Applied optics》1995,34(22):5010-5015
A Fourier cosine transform method, based on the Rayleigh-Gans-Debye thin-shell approximation, was developed to retrieve vesicle size distribution directly from the angular dependence of scattered light intensity. Its feasibility for real vesicles was partially tested on scattering data generated by the exact Mie solutions for isotropic vesicles. The noise tolerance of the method in recovering unimodal and biomodal distributions was studied with the simulated data. Applicability of this approach to vesicles with weak anisotropy was examined using Mie theory for anisotropic hollow spheres. Aprimitive theory about the first four moments of the radius distribution about the origin, excluding the mean radius, was obtained as an alternative to the direct retrieval of size distributions.  相似文献   

8.
Ground-based sunphotometer observation of direct and scattered solar radiation is a traditional tool for providing data on aerosol optical properties. Spectral transmission and solar aureole measurements provide an optical source of aerosol information, which can be inverted for retrieval of microphysical properties (particle size distribution and refractive index). However, to infer these aerosol properties from ground-based remote-sensing measurements, special numerical inversion methods should be developed and applied. We propose two improvements to the existing inversion techniques employed to derive aerosol microphysical properties from combined atmospheric transmission and solar aureole measurements. First, the aerosol refractive index is directly included in the inversion procedure and is retrieved simultaneously with the particle size spectra. Second, we allow for real or effective instrumental pointing errors by including a correction factor for scattering angle errors as a retrieved inversion parameter. The inversion technique is validated by numerical simulations and applied to field data. It is shown that ground-based sunphotometer measurements enable one to derive the real part of the aerosol refractive index with an absolute error of 0.03-0.05 and to distinguish roughly between weakly and strongly absorbing aerosols. The aureole angular observation scheme can be refined with an absolute accuracy of 0.15-0.19 deg. Offset corrections to the scattering angle error are generally found to be small and consistently of the order of -0.17. This error magnitude is deduced to be due primarily to nonlinear field-of-view averaging effects rather than to instrumental errors.  相似文献   

9.
The laser aureole at 1.06 microm resulting from the redirection of light by sea surface reflection and forward scatter through maritime boundary layer aerosols to a sensor high above the ocean surface is modeled for profiles with typical North Atlantic aerosol size distributions. The magnitude of this laser aureole is highly correlated with the optical depth for these profiles. This optical depth, estimated from the laser aureole, is used to adjust the power of the extinction-backscatter relationship in a Bernoulli-Riccati lidar inversion. Using a lognormal marine aerosol model, 150 profiles of aerosol size distributions are selected by their probability of occurrence in the North Atlantic boundary layer. For these profiles, the lidar inversion using the estimated optical depth predicted the surface extinction 5 times better than the lidar inversions using a climatological backscatter-extinction relationship.  相似文献   

10.
We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.  相似文献   

11.
It is well known that size distributions of aerosols influence their optical properties. Many previous studies have focused on the optical properties of aerosols with particular weather conditions, such as haze, fog, or pollution. However, few studies have investigated the influence of precipitation on the optical properties of aerosols. In this study, the optical properties of polydispersed atmospheric aerosols following a wet removal process were investigated. For these calculations, a lognormal distribution was used to represent the raindrop size distribution and the tri-modal aerosol size distributions. Variations in aerosol size distributions and the corresponding changes an extinction coefficient caused by the wet scavenging process were quantified with different compositions of aerosols as a function of rain intensity. The results showed that the extinction coefficient decreased and the corresponding visibility was enhanced with the precipitation duration because of the precipitation scavenging. It was also shown that the rain intensity and the refractive index and size distribution of aerosols influenced the calculations of extinction coefficient of aerosols.  相似文献   

12.
The calculation of angular light-scattering distributions is considered for low-coherence light incident on a polydisperse particle size distribution of scatterers. As low-coherence light is now commonly used in interferometry schemes when applied to biomedical imaging, the difference between detecting scattered intensity and interferometrically detecting the scattered field is examined. An expression is derived that allows the presence of multiple wavelengths lambda and particle sizes d to be described by a single distribution in the size parameter x = pi d/lambda, which simplifies numerical calculations. The applicability of this expression is examined numerically.  相似文献   

13.
Repetitive genetic inversion of optical extinction data   总被引:1,自引:0,他引:1  
Lienert BR  Porter JN  Sharma SK 《Applied optics》2001,40(21):3476-3482
We describe a genetic method of deriving aerosol size distributions from multiwavelength extinction measurements. The genetic inversion searches for log-normal size distribution parameters whose calculated extinctions best fit the data. By repetitively applying the genetic inversion using different random number seeds, we are able to generate multiple solutions that fit the data equally well. When these solutions are similar, they lend confidence to an interpretation, whereas when they vary widely, they demonstrate nonuniqueness. In this way we show that, even in the case of a single log-normal distribution, many different distributions can fit the same set of extinction data unless the misfit is reduced below typical measurement error levels. In the case of a bimodal distribution, we find many dissimilar size distributions that fit the data to within 1% at six wavelengths. To recover the original bimodal distribution satisfactorily, we found that extinctions at ten wavelengths must be fitted to within 0.5%. Our results imply that many size distributions recovered from existing extinction measurements can be highly nonunique and should be treated with caution.  相似文献   

14.
A novel technique based on optical patternation is described for three-dimensional diagnostic studies of aerosols used in analytical spectroscopies. The aerosol is illuminated with a thin laser light sheet to capture images of the fluorescence and Lorenz-Mie light-scattering signals from the aerosol field with a charge-coupled detector. These measurements allow for the rapid and nonintrusive elucidation of two-dimensional spray structures, planar mass distributions, and spatial droplet size distributions. The ratio of the fluorescence image to the Lorenz-Mie image is then utilized to construct a spatially resolved map of the volume-to-surface area mean of the aerosol (Sauter mean diameter). Three-dimensional maps of spray structure, mass distribution, and droplet size distribution are obtained for the entire aerosol field by image stacking. The technique is applied to the measurement of the droplet size over the aerosol field at distances of 5-30 mm from the nebulizer tip where droplet sizes ranged from 6 to 12 microm for a direct injection high efficiency nebulizer used in inductively coupled plasma spectrometries.  相似文献   

15.
Box GP 《Applied optics》2005,44(7):1288-1295
The analytic eigenfunction inversion technique to retrieve aerosol columnar size distributions from Mie extinction measurements has been extended to include a priori information, specifically surface area. The earlier (standard) and new (subtracted) techniques are compared by use of synthetic data that cover typical aerosol size distributions. Two different measurement wavelength ranges are considered. It is shown that the most appropriate inversion technique depends on the particle sizes, with the standard technique being more appropriate for small particles and the subtracted being more appropriate for large particles. Also presented is a simple method to determine whether a particular inversion technique is likely to produce meaningful results with a particular data set.  相似文献   

16.
Simulation studies were carried out with regard to the feasibility of using combined observations from sunphotometer (SPM) and lidar for microphysical characterization of aerosol particles, i.e., the retrieval of effective radius, volume, and surface-area concentrations. It was shown that for single, homogeneous aerosol layers, the aerosol parameters can be retrieved with an average accuracy of 30% for a wide range of particle size distributions. Based on the simulations, an instrument combination consisting of a lidar that measures particle backscattering at 355 and 1574 nm, and a SPM that measures at three to four channels in the range from 340 to 1020 nm is a promising tool for aerosol characterization. The inversion algorithm has been tested for a set of experimental data. The comparison with the particle size distribution parameters, measured with in situ instrumentation at the lidar site, showed good agreement.  相似文献   

17.
Hirst E  Kaye PH  Guppy JR 《Applied optics》1994,33(30):7180-7186
A laser light-scattering instrument has been designed to permit an investigation of the spatial intensity distribution of light scattered by individual airborne particles constrained within a laminar flow, with a view to providing a means of classifying the particles in terms of their shape and size. Ultimately, a means of detecting small concentrations of potentially hazardous particles, such as asbestos fiber, is sought. The instrument captures data relating to the spatial distribution of light scattered from individual particles in flow. As part of an investigation to optimize orientation control over particles within the sample airstream, the instrument has been challenged with nonspherical particles of defined shape and size, and a simple theoretical treatment based on the Rayleigh-Gans formalism has been used to model the spatial intensity distribution of light scattered from these particle types and hence derive particle orientation data. Both experimental and theoretical scattering data arepresented, showing good agreement for all particle types examined.  相似文献   

18.
Measurement of scattered light intensity and aerodynamic particle sizing are two methods that have recently been coupled with time-of-flight mass spectrometry for real-time determination of aerosol particle size and composition. An aerosol analysis technique recently developed in our laboratory, aerosol time-of-flight mass spectrometry, offers a unique experimental platform to evaluate both of these sizing techniques. This paper presents a comparison of results obtained with these two methods.  相似文献   

19.
Estimation of particle-size distribution is analyzed for the complicated case of compound aerosols, in which particles are distinguished by sizes and optical constants. This task arises in a number of interesting practical situations when aerosol scatterers cannot be described with a common refractive index. This is an inverse problem with a large number of variables, and questions of formal inversion are of great importance here. They are discussed in detail, and an improved numerical-inversion method is proposed. The method provides a nonnegative and highly stable solution and makes it possible to include varied additional or a priori information. It is shown that the proposed technique is closely related to well-known linear and relaxation methods widely used in atmospheric optics. The algorithm for determination of bicomponent aerosol-size distribution is devised. It uses the intensity of light scattered at different angles and spectral-extinction measurements. In addition, the algorithm can incorporate a priori restrictions of size-spectra smoothness. A set of numerical examples illustrates the algorithm.  相似文献   

20.
Measuring the size and charge of objects suspended in solution, such as dispersions of colloids or macromolecules, is a significant challenge. Measurements based on light scattering are inherently biased to larger entities, such as aggregates in the sample, because the intensity of light scattered by a small object scales as the sixth power of its size. Techniques that rely on the collective migration of species in response to external fields (electric or hydrodynamic, for example) are beset with difficulties including low accuracy and dispersion-limited resolution. Here, we show that the size and charge of single nanoscale objects can be directly measured with high throughput by analysing their thermal motion in an array of electrostatic traps. The approach, which is analogous to Millikan's oil drop experiment, could in future be used to detect molecular binding events with high sensitivity or carry out dynamic single-charge resolved measurements at the solid/liquid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号