首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《石油机械》2019,(11):74-80
静电聚结与旋流分离相结合可以提高油水乳化液的分离效率,有效减少油水分离设备的占地面积。但现有静电聚结旋流分离器方面的研究文献均未关注水出口的含油量,同时缺少对分离器的具体结构参数设计。为此,提出了一种新型结构的管式静电旋流分离器。该分离器采用切向入口+等螺距螺旋叶片+向前型母线椭圆形叶片的多次起旋结构;依据油水乳化液中分散相粒径值和原紧凑型静电聚结器达到一定聚结效果的电场停留时间,初步确定了分离器的主体结构尺寸;在此基础上对简化后主体流道的内部流场进行了CFD数值模拟,分析了起旋叶片级数、分流比、入口流量及分散相水滴粒径对分离性能的影响。研究结果表明:对于含水体积分数为30%的油水乳化液,当分散相粒径为150μm、流量为4. 5 m3/h、分流比为0. 1时,分离器水出口含油体积分数小于0. 1%,分离效率达99. 3%。管式静电旋流分离器可多次发挥静电聚结和旋流分离的作用,大幅提高分离性能,实现水出口含油量和油出口含水量的双向指标控制。  相似文献   

2.
随着油田开采逐渐进入高含水期,对油水分离器的性能要求也愈发严格,现有油水分离器已很难达到分离要求,油水分离领域亟需新的研究进展。通过数值模拟的方法对一种新型离心超重力油水分离器流场特性进行了研究。从流动参数、结构参数以及物性参数3个方面探究不同参数对分离器分离性能及流场特性的影响规律。研究结果表明:各含水体积分数情况下该分离器分离效果都较好,油出口分离效率随着含水体积分数上升而减小,且含水体积分数较高时水出口的含油量较低;随着入口流量的增大,水出口含油量不断增大,油出口分离效率先减小后基本不变;随着电机转速的增大油出口分离效率先增大后基本不变,电机转速为500 r/min时,油出口分离效率为82%,电机转速为1 500 r/min时,油出口分离效率增大至97%;在模拟范围内叶片数量与分离效果呈正相关;油密度和油黏度与分离器分离效果均呈负相关,其值越大分离效果越差。研究结果可为离心超重力油水分离器的实际应用提供理论指导。  相似文献   

3.
重力式油水分离器的分离特性研究   总被引:4,自引:0,他引:4  
利用重力式分离模拟试验系统,以白油和水作为工作介质,分析了6个取样口和油出口、水出口的油水分离效果,进而研究了卧式油水分离器的分离特性和流动规律。研究表明:①分离器内存在一个最佳的油水界面位置,在该位置油层中的水滴分离效果最好,油相粘度是决定该位置的重要参数;②油层厚度相同时,入口含油浓度越小,油相需要的停留时间越少,分离效率就越高,水相的分离效率与入口含油浓度无直接关系;③无内部构件的分离器底部流场存在剧烈的涡流,严重影响油水分离特性,须添加整流和聚结构件,改善分离器内部流场,促进小液滴的聚结合并,以提高油水分离效率。  相似文献   

4.
为了研究旋流油水分离器的影响因素,优化其关键结构尺寸,获得最佳使用工况,开展了旋流分离器的油水分离试验。研究结果表明:随着进液口直径的增大,分离效率先增大后减小,圆锥段角度表现出同样的规律。随着排油口直径的增大,分离效率逐渐减小,圆柱段长度则表现出相反的规律。随着工作压力的增大,分离效率先迅速增大后相对稳定,最后迅速降低。随着排量的增加,分离效率先基本稳定在最优值而后骤降。随着油水比和原油黏度的增大,分离效率呈现出先缓慢下降而后迅速下降的规律。在本试验条件下,旋流油水分离器最优的结构参数组合为进液口直径12 mm,排油口直径3 mm,圆锥段角度11°,圆柱段长度70 mm。优化后的旋流油水分离器的最佳工作压力为1.5~4.0 MPa,日处理量控制在45 m3以内,适用于油水比低于20%、原油黏度低于40 mPa·s的工况。研究结果可指导地面旋流油水分离器的设计及现场应用。  相似文献   

5.
为了提高含聚结构件油水分离器分离效率,针对容器内置式静电聚结构件进行研究,通过粒径的变化和分离器油出口含水变化来评价静电聚结效果。在油水分离器内安装单板绝缘电极,改变含水率、流量和电压,确定聚结板的分离特性。评价结果表明:电场强度对聚结设备分离效率有重要影响,提高电场强度,可以有效提高液滴聚并速率;含水率对原油乳状液的黏度、初始粒径分布和介电常数有重要影响;随着流量降低,分离器中水滴沉降时间延长,油水分离效率提高。  相似文献   

6.
为探究油田采出液温度对油水分离旋流分离器(简称旋流器)性能的影响,采用数值模拟与试验验证相结合的方法,研究不同温度下旋流器分离流场内的流动参数、油相分布、油水分离效率的变化规律。结果表明:随着采出液温度升高,分离流场中油水混合物的切向速度、压力、湍动能以及油滴粒子的径向沉降速度均增大,旋流器的分离性能提高;随着采出液温度升高,旋流器轴心处油水混合物中油相体积分数提高13.97百分点,油相体积分布非均匀度降至80%以下,油芯平均直径减小0.16 mm,轴心处的油相富集程度提高,分布均匀;当采出液温度高于70 ℃时,旋流器分离效率达99%以上。  相似文献   

7.
应用Fluent软件,计算分析了螺旋叶片入口型式对脱水型水力旋流器的分离性能和压力特性的影响。对螺旋叶片的出口角度、圈数以及叶片数量进行优选。通过对比分析发现,在一定范围内减小螺旋叶片出口角度有利于溢流口处油核的形成,提高油水分离效率,但螺旋叶片出口角度过小会增加油滴破碎的机会,反而会降低分离效率,压力损失也相应增大;增加螺旋叶片圈数对入口油滴有一定的聚结作用,但圈数过多聚结作用会减弱,压力损失也相应增大;增加叶片数量可以使流体分布更加均匀,有效减小流场内的紊流作用,提高分离效率。  相似文献   

8.
利用Fluent软件,采用Realizablek-ε模型对不同流速、不同开孔条件下螺旋管内部流场进行了数值模拟分析。入口流速较高时,螺旋管内油水界面为向内侧管壁倒伏的"V"字形,"V"字形内侧为油相,外侧为水相;螺旋管横截面上流体速度与压力沿径向由内侧管壁向外侧管壁逐渐增大。根据模拟结果提出了螺旋管开孔优化设计方法:在高入口流速下,螺旋管外侧管壁开孔位置应选择在螺旋管横截面水平位置及其上、下一定角度处(同时开孔),从而提高油水分离效率;在保证管内压力为正值的前提下,可考虑在内侧管壁开孔释放分离出的油。为降低系统压损,应尽量降低入口流速。  相似文献   

9.
目前对分离器的数值研究较广泛,但多是对不同构件下的流场模拟研究,缺少分析含砂稠油卧式分离器中颗粒的沉积率对分离器分离效率的影响。鉴于此,针对含砂稠油卧式分离器中油、水、砂的分离情况,建立卧式分离器的三维流场模型,数值模拟得到了分离器内的砂粒运动轨迹、油水分布情况及不同粒径的砂粒质量分数变化;分析了不同入口速度、稠油黏度、含砂质量分数对分离器分离效率及砂沉积率的影响。数值模拟结果表明:卧式分离器可以在内部挡板周围形成中等强度的旋转流场;稠油被砂粒吸附在周围,形成聚合团状物,可降低油滴的上浮速度,增大油滴上浮剪切力和摩擦阻力,从而降低分离效率;分离器内砂粒粒径小于110μm,砂粒不会沉积在分离器内,反之砂粒发生沉积的可能性逐渐增大;分离器入口速度大于1 m/s时,分离器的油水分离效率显著下降,砂分离效率逐渐降低;稠油的动力黏度越大,分离效率越低;随着含砂质量分数的增大,分离效率逐渐降低,砂粒的沉积率逐渐增大。研究结果可为稠油除砂分析中砂粒尺寸控制和分离器现场作业提供理论支撑。  相似文献   

10.
随着海上油田产液量的日益增高,原油处理流程脱水效果的好坏将直接影响到外输原油的品质以及下游回注生产水的水质。为了保证原油在处理流程中达到良好的脱水效果,需要对处理流程中三相分离器及电脱水器的油水界面进行准确测量。通过对三相分离器运行效果及油水界面测量情况分析,电脱水器运行效果及油水界面测量情况分析,提出了一种油水界面测量的改进方法。经油田现场实际应用一年的结果验证,油水界面测量方法调整后能够准确测量出油水界面,油水处理效果改善明显,电脱水器运行电流明显降低,水相出口含油率由250 mg/L下降至120 mg/L;改进后系统稳定性得到提高,上游来液波动影响明显降低,提高了生产效率,降低了生产成本。  相似文献   

11.
为优化螺旋管油水分离能力,对不同回转形状下螺旋管的分离效率进行研究。以水和油为混合介质,运用Euler-Euler多相流模型及PBM相群平衡方程对螺旋管内油水两相流动进行数值模拟。研究了圆形螺旋管在混合液入口流速为0.10~0.50 m/s范围内与在同一速度不同回转形状下管内油水分离效果及两相分布规律。对于圆形回转形状的螺旋管,在一定范围内,随着流速加快,其分层明显,油水分离效果增强,可当流速过快,分离时间减短,油水分离效果减弱,研究中的几何模型相对较佳的入口流速为0.30 m/s;在相同的流速及主要的几何参数情况下,三角、四边、五边回转形状的螺旋管,随着其边数的增加,回转碰撞聚结的概率提高,其油水分离效果提升,圆形回转形状相当于拥有无数条边数的多边形,所以分离效率最高,分离效果最好。研究结果可为螺旋管结构形状的优化设计提供参考。  相似文献   

12.
针对内部设有中心体的轴流式气-液旋流分离器,根据液滴在分离器内部旋流场的受力情况,建立分离器分离效率模型。实验发现,当液滴直径大于10 μm时,通过理论模型求得的液滴粒级分离效率与实验值吻合较好;在一定气速范围内,减小导流叶片出口角、增加中心体直径以及减小排气管直径均能够提高分离效率,即对于一定结构的分离器,存在相应的临界气速能够使分离器的分离效率达到最大值,随气速继续增大,分离效率呈下降趋势。根据实验结果提出分离器在不同工况下的设计准则,当气速高于临界气速时,为保证分离器分离效率,维持较低压降,设计导叶出口角为45°,中心体直径与筒体直径比为0.5,排气管直径与筒体直径比为0.85,分离器长度与筒体直径比为3。当入口气速低于临界气速时,可根据理论模型对分离器结构参数进行调整。  相似文献   

13.
濮城油田高效三相分离器沉降脱水技术的应用   总被引:4,自引:0,他引:4  
三相分离器采用单向进料,天然气预分离,活性水洗涤破乳,聚结板整流技术,提高了油,水,气分离的效率;根据“U”型管压力平衡原理,采用隔板结构,实现了油水界面平稳控制;利用油水界面调节装置,可根据油,水性质变化情况,把油水界面控制在合理位置,使分离器工作在最佳状态。该分离器处理能力为同等规格分离器的3倍以上。高油气比,高含水原油经一次沉降脱水,出口原油含水率低于0.5%,污水含油低于200mg/L。  相似文献   

14.
为解决常见的气液分离器气相出口含液量大和管汇连接复杂等问题,提出了一种新型同向出流式气液旋流分离装置。该装置能有效降低气相出口的液相含量,主要针对其不同结构参数开展了数值模拟及试验研究,并完成了结构参数的优选。研究结果表明:影响气相运移速度及分离性能的最佳内锥角度为2°,最佳进气孔角度为30°,最佳脱气效率模拟值为96%;随着内锥角度的增大,气相溢流管内的轴向速度呈先上升后下降的规律,内锥角度为2°时,轴向速度最大达到0.58 m/s;随着进气孔角度的增大,气相溢流管内的轴向速度基本呈上升规律,进气孔角度为30°,轴向速度最大达到0.60 m/s;优化后的气液分离器结构适用于含气体积分数区间为15%~30%,最佳分离效率为92.6%。研究结果可为同向出流气液分离器的工程应用提供理论指导。  相似文献   

15.
传统的油田集输工艺损耗能量大,运行成本高。鉴于此,基于Fluent数值模拟软件,采用RNG k-ε湍流模型和欧拉多相流模型对T形管分离器的流场特性以及油水分离过程展开研究。研究结果表明:油水两相速度分布规律基本相同,在主管中沿流动方向速度逐渐降低,分支管中速度最大,水相在主管顶部区域速度较小,在汇管中上述分布趋势更加明显;湍流在分支管和主管连接处、分支管和汇管连接处以及汇管上游较为剧烈,油水发生强烈掺混;入口流速对油水分离过程的影响较大,流速越大,流体的停留时间越短,分流扰动后恢复为分层流更加困难;流速越大,油水剪切作用增强,油滴更均匀分散在水中,混合层携带更多的油相,故操作中需要确定最佳流速;随着含油体积分数增大,混合层厚度增加,最终分离效率呈现先缓慢增加,后逐渐下降的趋势;分流比较低时,汇管主要流出底层水,分离效率较低;随着分流比增大,汇管的流量增大,油水间扰动增强,流体流经汇管携带了部分混合层流体,分离效果明显提升;但分流比继续增大,混合层全部流入汇管后,油层开始流入汇管,此时分离效率随着分流比的增大呈线性降低。基于研究结果,最优操作参数为:入口流速0.10~0.30 m/s,入口含油体积分数5%~9%,分流比0.5~0.7。研究结果为油水分离提供了新思路,可为探究高效分离效果的设备结构设计和优化提供参考。  相似文献   

16.
对重力式油气水三相分离器的不同内件布置形式进行分析,旨在不增加内件用量的前提下,通过优化布置,达到更好的油水分离效果。提出一种新型内件布置形式,并对新型内件布置结构的油水分离效果进行数值模拟研究。评估不同工作环境下的油水分离性能。研究表明,采用相间布置聚结板组和均流孔板的分离器内件布置形式获得的油相浓度在分离区域比常规分离器高,油水分界面较窄且更加清晰。为提升海洋平台油水分离器的分离效率提供依据。  相似文献   

17.
油水分离器的杯形对油水分离效果实验研究   总被引:1,自引:0,他引:1  
针对大庆油田产油高含水背景,研究利用油水分离器对井下油水进行分离,使其达到直接回注的要求,达到节能降耗的目的。而不同杯形的油水分离器油水分离效果不同。在室内进行模拟井筒抽油实验,在相同含水率的条件下,对不同杯形的油水分离器分别进行采出油含水率比较,从中优选出具有分离效果较好的杯形的油水分离器。实验结果表明:倾角六十度、十二棱形的油水分离器分离效果较好。  相似文献   

18.
相对于单原理油水分离方法而言,利用旋流+膜联合原理进行油水分离是一种新的油水分离方式。为提高井下油水分离性能,探讨一种联合原理的油水分离器。建立旋流+膜联合油水分离器的物理数学模型,并用数值模拟的方法计算其中的流场分布规律,针对不同分流比、入口流速和入口含油体积分数对其性能进行系统研究。结果表明:分流比的变化影响第一级和第二级出油口相汇流动规律,应用时应进行性能核算从而保证两级分离的效果;随着入口流速的增大,旋流+膜分离性能逐渐更优,若流速过低,则旋流+膜分离性能较差;随着入口含油体积分数增大,旋流所分离的油相占比减小,留给膜分离的油相占比增大,即含油体积分数较大时,旋流+膜联合油水分离的应用更有必要。  相似文献   

19.
螺旋分离器水流动特性的CFD模拟与PIV试验   总被引:2,自引:0,他引:2  
设计了一种新的螺旋分离器,采用CFD数值模拟技术对螺旋分离器的入口管段、螺旋分离段及出口管段内流体流动速度场及压力损失分布特性进行了分析,结合PIV流场测试试验对分离器的入口管段和出口管段内流体流动速度场进行了测量和对比分析。介绍了螺旋分离器油水分离的工作原理、结构参数及PIV实验流程。结果表明:该螺旋分离器螺旋导流效果明显,在螺旋分离段及出口管段内具有持续时间长、离心分离强的螺旋流分离流场;流体流过螺旋分离段后,在出口管段内可形成稳定的螺旋流场;通过对比分离器内入口管段及出口管段PIV试验速度测量值与数值模拟值,结果吻合良好,验证了模拟结果的可靠性;通过分离器的压力损耗分析,指出了螺旋分离器的主要压力损耗位置,设计工况下的分离器最大压力损耗不超过90 kPa。  相似文献   

20.
简讯     
<正> 超细纤维膜油水分离嚣在FCCU上的应用超细纤维膜油水分离器是一种结构非常紧凑的小型、高效筒式过滤器。它可以快速、高效、大流量地分离操作,将取代传统的分离技术而被普遗采用。《催化裂化》1991年No6专文介绍了这种设备的特征和使用实例。筒式过滤器由Φ1~2μm的纤维(交错排布)、支撑筛网和金属外壳等组成。过滤器用以过滤FCCU轻循环油时,在20~25℃时出口油中含水180~200ppm,滤筒使用周期达一年。用于柴油出厂管道中的水分离时,由于粘度高,用1μm级别的凝聚器分离微量水  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号