首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高A473M马氏体不锈钢表面的耐磨性能,采用滚压加工强化不锈钢表面,对其组织及性能进行研究,并确定了最佳工艺参数.采用扫描电子显微镜、白光干涉仪、显微硬度计和摩擦磨损实验机对不锈钢的硬化层组织、表面粗糙度、显微硬度及摩擦磨损性能进行表征.结果表明,当滚压进给量由0.05 mm/r增加至0.15 mm/r时,不锈钢表面粗糙度变化趋势呈“∨”形,表面显微硬度和磨损性能的变化趋势呈“∧”形.当进给量为0.1 mm/r且表面粗糙度为62.7 nm时,不锈钢硬化层组织明显细化,滚压层表面显微硬度达到550 HV且为基材的2.2倍,硬化层深度达到200 μm,相对耐磨性为3.7.  相似文献   

2.
文章研究了用硬质合金刀具高速铣削TC4钛合金时,铣削参数对表面完整性(表面粗糙度、表面形貌、显微硬度和微观组织)的影响,以期为优化TC4钛合金高速铣削参数,及进行表面完整性控制研究提供相关的实验数据基础.主轴转速(r/min)依次选择3 000、6 000、8 000、10 000,轴向切深分别选择0.15 mm和0.25 mm,每齿进给量恒为0.05 mm/z.结果表明:主轴转速对表面粗糙度、表面形貌、显微硬度的影响显著;轴向切深对表面粗糙度和表面形貌的影响比较显著,对硬化深度和硬化程度影响不大;主轴转速和轴向切深对微观组织的影响不明显;在实验参数范围内,当转速为8 000 r/min、轴向切深为0.15 mm时,可以获得最好的表面完整性,此时,表面粗糙度为0.313 μm、硬化深度为0.06 mm、硬化程度为15%、微观组织无明显变化.  相似文献   

3.
为研究不同激光功率参数对激光硬化后的最终显微组织、硬度和耐磨性的影响,应用宽带扫描技术进行了GCr15轴承钢激光强化处理试验,用光学显微镜和扫描电镜、x射线衍射仪等现代测试手段对GCr15轴承钢试样的显微组织和形貌尺寸特征进行了分析,磨损试验在MM200磨损试验机上进行.结果表明,激光参数变化所产生的显微组织变化造成了表面硬度值和磨损率的较大差异.激光功率大时,激光硬化层表面未溶碳化物量减少,使得表面马氏体中碳的质量分数增加,表面硬度增高.在干摩擦磨损过程中,激光改性层表面发生摩擦诱发马氏体相变.在干摩擦和油润滑两种条件下,激光功率越大,激光硬化层的抗磨损性越好.  相似文献   

4.
等离子堆焊原位合成WC增强Ni基合金改性层   总被引:1,自引:0,他引:1  
为了进一步提高Ni基合金的耐磨性能,采用等离子堆焊技术在304L奥氏体不锈钢表面原位合成WC增强Ni基合金改性层.利用光学显微镜、扫描电子显微镜和能谱仪、X射线衍射仪、显微硬度计及销-盘磨损试验机等设备对改性层的显微组织、成分、显微硬度及摩擦磨损性能进行研究.结果表明:当Ni基合金改性层中直接加入WC颗粒时,WC颗粒出现"沉底"现象,改性层组织不均匀,而通过原位反应合成的WC相呈块状弥散分布于整个改性层,加入适量的氧化钇后,改性层组织变得细小致密,WC增强相的形态、尺寸和分布等均发生了变化,改性层硬度显著提高,耐磨性提高了2倍以上.  相似文献   

5.
为了进一步提高核泵用钢的耐磨性能及抗空蚀性能,采用高能脉冲冷焊技术在304不锈钢表面制备了Fe基合金改性层.利用扫描电子显微镜和X射线衍射仪分别对改性层的显微组织和相结构进行了分析,利用显微硬度计、摩擦磨损试验机及超声波振荡空蚀仪分别对改性层的显微硬度、耐磨性与抗空蚀性能进行了研究.结果表明,改性层组织细密,且主要由基体相α-Fe和硬质碳化物相Cr_(23)C_6和Cr_7C_3组成,改性层的最高显微硬度可达510 HV,相对耐磨性为3.88.空蚀5 h后,改性层的失重量和表面粗糙度分别约为304不锈钢基材的1/5和1/6.  相似文献   

6.
为了提高紧固件的摩擦磨损性能,采用直流电镀工艺,在1Cr13钢表面制备了单层标准镀铬层,研究了基材1Cr13钢表面粗糙度对其表面镀铬层的组织结构与膜基结合强度的影响.利用激光共聚焦显微镜、扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计与多功能材料表面性能测试仪对镀铬层的微观组织、相结构、显微硬度及膜基结合强度进行了分析.结果表明,随着基材表面粗糙度的降低,镀铬层表面更加致密、均匀,微裂纹数量明显减少,镀铬层的显微硬度增加,临界载荷达到了38.7 N,膜基结合强度得到明显提高.  相似文献   

7.
采用MIG焊工艺,在Q235钢试板表面堆焊ER-310(H12Cr26Ni21Si)不锈钢。通过试验得出,当焊接电流为208A,焊接电压为19.2V,摆动宽度为12mm,摆动速度为26mm/s,焊接速度为5mm/s,搭接量为7mm时,获得了成形美观、致密无缺陷的不锈钢堆焊层。对堆焊层的显微组织、化学成分进行了分析,测试了堆焊层的显微硬度及不锈钢堆焊层的耐蚀性。结果表明,堆焊层组织为奥氏体树枝晶和等轴晶;Ni、Cr、Fe是组成堆焊层的主要元素;堆焊层硬度高于基体;堆焊后材料表面的耐腐蚀性能明显提高。  相似文献   

8.
金属平面滚压塑性精加工的实验分析   总被引:1,自引:0,他引:1  
对金属表面的滚压塑性精加工进行了实验研究。测试分析了初始表面粗糙度和纵向压下量、横向进给量、滚压速度、滚压道次等对表面粗糙度、硬度、金相组织形貌的影响。研究结果表明,滚压塑性精加工可以提高金属(特别是有色合金软金属)的表面硬度、致密性,降低表面粗糙度,与常规的磨削精加工相比具有更多的优点,如节省了砂轮和冷却液的消耗,消除了对环境的污染,提高了被加工材料表面的物理、机械性能等。  相似文献   

9.
SUS304钢的振动滚压加工表面粗糙度的推算   总被引:1,自引:0,他引:1  
本文在用振动滚压超精加工新工艺对 SUS304不锈钢零件表面进行精加工实验的基础上,建立了振动滚压加工的力学-数学模型.依据该模型和大量试验数据推导出振动滚压加工后表面粗糙度的经验计算公式.还分析了加工参数(滚压力,进给量,振动颓率,振幅等)对表面粗糙度的影响。  相似文献   

10.
马氏体不锈钢等离子堆焊铁基合金组织及磨损性能   总被引:2,自引:0,他引:2  
为了研究马氏体不锈钢的表面性能,采用等离子堆焊技术在Z5CND16-04不锈钢表面制备铁基合金堆焊层.采用扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计及销盘磨损实验机等检测设备,对堆焊层的组织结构、成分、硬度和磨损性能进行了研究.结果表明,铁基合金堆焊层主要由α-Fe、(Fe,Cr,Mo)7C3和(Fe,Cr,Mo)23C6相组成,添加稀土元素后相组成无明显变化.铁基合金堆焊层的硬度和耐磨性均明显高于马氏体不锈钢基材.添加适量的CeO2后,明显细化了堆焊层的显微组织.  相似文献   

11.
N^+注入GCr15钢摩擦磨损性能研究   总被引:1,自引:0,他引:1  
通过多种表面测试手段对氮离子注入GCr15钢的摩擦磨损性能进行了研究,结果表明,由于离子注入引起注入层显微硬度提高,表面残余压应力增大,表面粗糙度降低,以及注入层表成了大量细小弥散分布的硬度析出相ε-Fe2-3N,使摩擦磨损机理发生了变化,从而改善了材料的摩擦学性能,在本实验条件,所得最佳参数为注入剂量4*10^17inos/cm^2,注入能量100keV。  相似文献   

12.
采用等离子喷焊工艺在Q235钢表面制备Ni60A合金喷焊层,对喷焊层组织结构进行分析,对喷焊层显微硬度、耐磨损性能进行了测试。实验结果表明,喷焊层与基体为冶金结合,喷焊层呈枝状晶组织,硬度达到HV617,耐磨损性能为基体的3~4倍以上。  相似文献   

13.
通过改变激光功率和扫描速度等参数,研究其对45钢激光表面强化组织与性能的影响。实验结果表明,单道扫描时,当保持扫描速度v为15mm/s时,增加激光功率P,可增加硬化层的深度,最大深度可达1.5mm以上。另外,P/v比值越大,硬化层深度越大;而当P/v比值保持不变时,硬化层深度随着激光功率的增加而增加,其中激光功率从1.2kW到1.8kW时,硬化层深度值增加较快;当激光功率大于1.8kW后,深度值的增长随功率增加变缓;而且硬化层的硬度都达到700HV以上,远高于基体的硬度。在激光多道搭接扫描时,激光能量的再次输入会导致靠近搭接区的前一道硬化层产生回火软化,其硬度接近基体的硬度。  相似文献   

14.
研究了18CrNiMo7-6齿轮钢超声滚压后表面变质层的性能和加工工艺。分别运用三维表面形貌测量系统、显微硬度计、超景深三维显微系统和高速大功率X射线残余应力分析仪等工具观察试样加工前后的表面变质层变化,并采用单因素试验分析试验数据,研究超声滚压工艺参数对试样表面变质层的影响。结果表明:经过超声滚压加工,表面粗糙度由未经超声滚压处理的3. 003μm减少到0. 468μm,显著的加工硬化在该材料表面形成,表面显微硬度从最开始的360. 9 HV升高到442. 9 HV,升高了22. 7%,高硬度层达到了300μm;平整的表面在超声滚压加工后出现;在距离表面40μm处残余压应力形成峰值,其值约为-790. 97 MPa。超声滚压技术显著提高了材料的变质层性能。  相似文献   

15.
利用直流等离子体辉光放电技术对双相不锈钢表面进行了低温离子渗碳硬化处理,主要研究了渗碳温度和渗碳时间对硬化层的影响。利用显微硬度计测试了渗碳层的表面硬度和硬度梯度;用光学显微镜观察了渗碳层横截面金相组织;用X-射线衍射仪分析了渗碳层的结构。分析结果表明:双相不锈钢表面渗碳层的硬度和厚度都随着渗碳温度的提高和渗碳时间的延长而提高,并且开始时增长速度比较快,超过某一值后变化趋于平缓。在430~490℃范围内,双相不锈钢表面可以实现在不降低耐蚀性能的前提下,得到高硬度及高厚度的硬化层。  相似文献   

16.
通过强流脉冲电子束对Ni200进行表面改性处理,并对处理后试样的表面形貌、表面硬度、截面硬度、摩擦磨损性能进行了分析。结果表明:不同照射次数下试样表面的熔坑数量、表面硬度、截面硬度都有一定的变化,25次照射后,试样的表面粗糙度极大降低,摩擦磨损性能有了很大的提高。  相似文献   

17.
灰铸铁激光表面处理硬化层的组织与性能   总被引:8,自引:0,他引:8  
测定了激光入射功率、扫描速度等工艺参数对灰铸铁表面硬化层深度、组织及显微硬度的影响 .实验结果表明 ,通过合理调配激光功率和扫描速度可实现微熔硬化处理和固态相变硬化处理 ,当功率一定时 ,随着扫描速度的增加 ,表面硬化区的深度、显微硬度逐渐降低 ;当扫描速度一定时 ,随着功率的提高 ,其硬化区深度及显微硬度均显著提高 ,金相分析结果表明 ,熔凝硬化区的组织为极细小初生晶 (M A′)加莱氏体 (M A′ Fe3 C) ,固态相变区的组织为隐针马氏体、残余奥氏体和片状石墨 .磨损实验结果表明 ,激光处理后 ,试样的耐磨性较未处理的试样提高了 3倍 .  相似文献   

18.
对7022铝合金的不同温度退火试样进行干滑动摩擦磨损试验,用扫描电镜、显微硬度测试仪和三维形貌仪分析各试样的磨损机制.结果表明,退火温度对材料的显微硬度和摩擦磨损性能有明显影响,退火温度在200℃时,材料显微硬度和摩擦磨损性能最好,此温度下材料得到完全再结晶,且晶粒细化;摩擦磨损性能随着显微硬度的提高而减小.塑变磨损、磨粒磨损和疲劳磨损为7022铝合金的主要磨损机理.  相似文献   

19.
为了进一步提高316不锈钢的表面性能,采用类激光熔覆技术在316不锈钢表面制备了Stellite合金沉积层.利用扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计与销盘磨损试验机,研究了Stellite合金沉积层的微观组织、化学成分、显微硬度及摩擦磨损性能.结果表明,Stellite合金沉积层主要由γ-Co和M_(23)C_6相组成.沉积层组织依附于316不锈钢基体的界面呈外延生长,由界面至表面依次呈平面晶、柱状晶和胞状树枝晶形态,且越靠近表面组织越细小.Stellite合金沉积层的最高硬度可达650 HV.在摩擦磨损过程中摩擦系数随着法向载荷的增大而减小,磨损机制主要为黏着磨损、磨粒磨损和氧化磨损.  相似文献   

20.
研究了不同扫描电流条件下,Cr12钢经等离子束扫描后硬化层的深度、显微组织及显微硬度。试验结果表明,Cr12钢经等离子束扫描后,表面得到隐针马氏体组织,起到了淬火硬化及细晶强化作用;硬化层深度随扫描电流而变化,大约为0.40—0.60mm,显微硬度可达600HV左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号