首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 49 毫秒
1.
裂纹缺陷是制约海底油气管道正常运行的关键因素,裂纹会引起管道运行期间的泄漏、断裂,双裂纹共同作用对管道的破坏更为严重。该文研究了含双裂纹缺陷管道的疲劳寿命变化规律,计算了裂纹与管道轴线夹角的变化,双裂纹之间夹角和距离变化对管道疲劳寿命的影响,并对其进行敏感性分析。结果表明,双裂纹之间夹角和距离固定,疲劳寿命随着裂纹与管道轴线夹角的增加而降低,但是变化率逐渐增加;裂纹与管道轴线夹角固定,双裂纹之间夹角和距离变化时,疲劳寿命曲线会出现多个极值点,极小值多出现在夹角为90°时。分析结果可以为海洋工程的实际情况提供参考。  相似文献   

2.
基于前人对管道疲劳寿命的研究,参考国内外文献,提出了在Paris公式的基础上考虑了管道的运行载荷比,并将其运用到某油气管道的疲劳寿命预测中。计算结果表明,管道的运行载荷比是影响疲劳寿命预测的一个主要原因。同时,该结果可以给管道检测、检修及更换提供依据。  相似文献   

3.
通过对X60和X80钢级埋弧焊管疲劳裂纹扩展试验的研究,分析了不同钢级及应力比对埋弧焊管裂纹扩展速率的影响,并模拟停输工况对X80级准1 219 mm×22.0 mm埋弧焊管的疲劳寿命进行了分析计算。研究结果表明,应力比和钢管材料本身抗裂纹扩展能力对裂纹扩展速率有明显的影响。在单一模拟工况下,X80级准1 219 mm×22.0 mm埋弧焊管疲劳寿命为76年,有足够的疲劳寿命安全裕度。  相似文献   

4.
拉伸作用下轴疲劳长裂纹扩展寿命分析   总被引:1,自引:0,他引:1  
考察了拉伸作用下不同类型表面裂纹模型(圆弧裂纹、椭圆裂纹和直裂纹)应力强度因子对轴疲劳长裂纹扩展寿命的影响,认为在计算具有表面裂纹轴类构件的疲劳寿命时,把裂纹处理为受深度比、纵横比2参数控制的椭圆裂纹比处理为仅受深度比控制的圆弧裂纹和直裂纹更加合理。在计算过程中,针对断裂韧度、裂纹扩展速率参数等的不确定性,按照它们各自的随机分布特征,应用Monte Carlo法分别对其进行抽样,采用Paris公式计算了轴寿命。  相似文献   

5.
含缺陷油气管道剩余疲劳寿命的预测   总被引:4,自引:1,他引:4  
采用Paris公式计算分析了含轴向表面裂纹油气输送管的疲劳裂纹扩展过程 ,通过含缺陷油气输送管的全尺寸实物疲劳试验 ,对所采用的含缺陷管道疲劳寿命预测方法的计算结果做了实验验证 ,结果表明 ,含缺陷管道的疲劳寿命数值计算结果与实物试验结果基本吻合 ,采用Paris公式以及Zahoor等提出的管道表面裂纹尖端应力强度因子表达式进行油气输送管道的疲劳寿命计算分析是可行的。由分析和计算得知 ,含表面裂纹缺陷钢管疲劳加载周期为 1465次 ,考虑安全裕度 ,其剩余疲劳寿命约为 2 0a。含外表面裂纹疲劳扩展过程分为疲劳裂纹稳定扩展和疲劳裂纹快速失稳扩展两个阶段 ,前者的扩展周期较长 ,后者的扩展周期相对较短。  相似文献   

6.
郭树桥  易先忠 《石油机械》1996,24(12):23-27
从三维介质中任意形状裂纹的分析着手,建立了描述复合型裂纹扩展规律的形变能密度因子准则(Es准则),提出了新的Z形裂纹简化分析模型,并对平面复合型疲劳裂纹的扩展轨迹、速率和剩余寿命作了预测和模拟。运用此方法对海底管线疲劳裂纹的寿命进行了分析和评定。该方法对其他工程结构的复合型疲劳裂纹及扩展规律的描述具有普遍适用性。  相似文献   

7.
以作者开发的焊趾半椭圆表面裂纹应力强度因子数据库SIFSC及基本模式法为基础,给出了应力场中焊趾表面裂纹在疲劳扩展过程中形态变化规律及寿命的工程分析方法,并用这个方法计算了一些焊接头在一些典型外加应力场和残余应力场中的裂纹形态发展曲线(CADC)。只有按裂纹扩展的自然途径,即按CADC来计算,才能得出正确的疲劳寿命估算。残余应力及角接接头中夹板的存在对疲劳寿命有不可忽略的影响。  相似文献   

8.
D级抽油杆疲劳裂纹扩展期剩余寿命预测   总被引:2,自引:2,他引:2  
骆竞Xi  黄淑菊 《石油机械》1995,23(12):27-31,35
测定了四种常用D级抽油杆用钢在空气和3.5%NaCl水溶液腐蚀条件下的裂纹扩展速率,计算了当抽油杆存在不同尺寸可扩展裂纹时的剩余寿命。结果表明,当杆体上存在深0.1mm可扩展裂纹,使用应力为117.6~372.6MPa时,尚可工作两个月到两年。裂纹扩展期的扩展规律表明,任何一种能引入表面残余压应力的表面强化方法,都可以提高抽油杆的使用寿命。  相似文献   

9.
现代工业正在向着高速、高温、高压的方向发展 ,疲劳问题严重威胁着现代工业设备的安全。该文采用 2 2 5Cr 1Mo带预裂纹环状缺口圆柱形试样的实验数据及有限元分析结果 ,研究了采用当量塑性应变范围Δεp 、当量蠕变应变范围Δεc 和当量应变范围Δε,来评价材料在 4 0 0℃、应变速率为每秒 0 2 %、不同缺口形式下的高温低周疲劳总寿命和裂纹扩展寿命的可行性、缺口形式对疲劳寿命 (疲劳总寿命和裂纹扩展寿命 )的影响以及蠕变 疲劳交互作用对高温低周疲劳总寿命和裂纹扩展寿命的影响 ,最后利用最小二乘回归方法 ,得到了该材料高温低周疲劳总寿命和裂纹扩展寿命评价方程〔1~ 7〕 。  相似文献   

10.
11.
《石油机械》2016,(12):1-6
随着工业4.0的发展,石油钻杆疲劳寿命完整性评估和智能化管理的内在需求不断增加。研究了典型的国外石油钻杆疲劳寿命预测系统模型——基于Miner法则的疲劳累积损伤模型和基于疲劳寿命标准化的线弹性断裂力学模型。介绍了2种模型的理论基础、计算公式、计算流程和应用情况,并分析了各自的优势和不足。最后结合各个模型的特点,提出了钻具疲劳寿命智能化评估管理系统的研究方向,这对工业4.0背景下智能钻井及钻具管理的发展具有重要指导意义。  相似文献   

12.
针对螺杆泵挠性轴在使用中频繁发生断裂这一问题,用概率分析方法有针对性地给出其安全使用概率与寿命之间的关系.在计算挠性轴疲劳裂纹扩展寿命过程中,考虑不同裂纹构形的影响,同时考虑几种主要参数的不确定性因素:初始裂纹长度、工况载荷、断裂韧度、裂纹扩展速率等,针对随机参数的分布特征,对其进行模拟实际操作工况抽样,应用Monte Carlo数值计算方法计算挠性轴寿命,得出可靠度随时间变化规律曲线.通过对计算结果的分析,找出了挠性轴设计中存在的问题,并提出了相应的改进意见.  相似文献   

13.
钻柱疲劳寿命预测研究   总被引:3,自引:0,他引:3  
疲劳破坏是钻柱失效的主要形式,进行钻柱疲劳寿命预测可以为钻柱的使用和管理提供依据。建立了钻柱力学模型,对钻柱的受力进行了分析,尤其分析了交变弯曲应力,并用Forman模型预测了钻柱的疲劳寿命,使计算结果更加准确。还应用形状改变能判据对构件屈服区进行了渐进分析,扩展了线弹性断裂力学的应用范围。理论计算结果和现场统计数据的一致性证明了此模型的实用性。  相似文献   

14.
采用小尺寸弯曲试样进行裂纹扩展速率(da/dN)试验,测定了某特定规格和使用工况的X70钢螺旋焊缝钢管母材和焊缝区的疲劳裂纹扩展速率。试验表明,该螺旋焊缝钢管母材区和焊缝区的裂纹扩展速率不同,焊缝区疲劳裂纹扩展速率快于母材区。通过测得的螺旋焊缝钢管疲劳裂纹扩展数据,对该钢管进行了服役寿命预测和评估。预测结果表明,该螺旋焊缝钢管焊缝区疲劳寿命明显低于母材区,其母材区疲劳寿命可超过30 a。  相似文献   

15.
韩军  高惠临  韩新利 《焊管》2011,34(12):27-31,35
受停输启用和供需变动的影响,油气管道的输送压力会发生周期性的变化,疲劳失效问题异常突出.特别是对于含有裂纹缺陷的管道,在疲劳载荷的作用下,若管道的应力强度因子幅超过疲劳裂纹扩展门槛值,裂纹就会发生疲劳扩展.当裂纹扩展到一定程度,超过管道运行压力下所能承受的临界缺陷极限尺寸,管道就会发生疲劳失效,从而影响到管道的使用寿命...  相似文献   

16.
孙朝阳 《石油沥青》2015,29(1):35-38
为研究沥青混凝土的裂缝生成与疲劳寿命,采用级配类型为AC-20的某高速公路的现场钻芯试件,进行室内控制应变疲劳试验;应用劲度变化曲线的裂缝生成机制,与应力-应变回圈面积的消散能理论,推估沥青混凝土疲劳寿命与临界应变。结果表明:应用劲度变化曲线与消散能理论,所得的疲劳寿命都有一致性,故可判断其都可作为疲劳寿命的定义。其中以劲度变化曲线较为便捷,可以作为推估裂缝生成与疲劳寿命的参考方法。  相似文献   

17.
18.
无线随钻测斜仪减振器疲劳寿命预测分析   总被引:1,自引:0,他引:1  
无线随钻测斜仪中减振器的疲劳寿命,直接影响仪器的可靠性和寿命。应用断裂力学理论建立减振器的疲劳寿命预测模型,通过对减振器进行有限元分析,将单元应力数据带入疲劳寿命预测模型,得到减振器的疲劳寿命,与减振器应用时的实际疲劳寿命对比,预测精度理想,进而确立减振器的保养更换时间,提高了仪器的可靠性和寿命。该研究分析方法对橡胶减振器寿命预测、安全设计提供方法参考。  相似文献   

19.
钻柱失效机理及其疲劳寿命预测研究   总被引:10,自引:1,他引:10  
钻柱工作条件恶劣,尤其在狗腿或弯曲井段时,较大交变弯曲应力常造成钻柱疲劳破坏,计算钻柱疲劳寿命可以为钻柱使用和管理提供依据。因此,在定性分析钻柱失效机理的基础上,对钻柱进行了三轴应力分析,并提出了钻柱疲劳寿命的计算模型,该模型可用于无裂纹钻杆和有裂纹钻杆疲劳寿命预测。算例表明,该方法对钻柱疲劳寿命的估算较为合理,符合工程实际。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号