共查询到20条相似文献,搜索用时 15 毫秒
1.
在天然气水合物储运技术的运用中,添加表面活性剂是一种被广泛应用的高效促进水合物形成的方法,其中表面活性剂的复配体系对天然气水合物生成的促进影响也是一个重要的研究方向。针对天然气水合物的大量快速制备,在初始压力7 MPa和2℃恒温条件下采用不同质量浓度的十二烷基硫酸钠(SDS)和脂肪醇聚氧乙烯醚磷酸酯(AEP)进行复配,观察不同质量浓度的复配体系对天然气水合物生成速率以及吸气量的影响。结果表明:在AEP溶液中,最终吸气量随着溶液质量浓度的增加而增加;但是由于壁垒效应的存在,阻碍了气体进一步溶解进入溶液中,延缓了水合物的生成,使得AEP溶液中水合物的生长速率与最终吸气量要低于SDS溶液;在SDS与AEP共同作用下,复配体系下水合物的生成速率与吸气量要大于单一体系下水合物的生成速率与吸气量。 相似文献
2.
3.
天然气是一种潜力巨大的清洁能源,但是其工业化生成技术仍面临较大的困难.表面活性剂作为一种工业催化剂能对天然气水合物的生成有着明显的促进作用.为研究不同表面活性剂下天然气水合物生成特点,采用静态条件下天然气水合物的实验方法,对SDS表面活性剂溶液与APG表面活性剂溶液以及他们的混合溶液进行天然气水合物生成实验.结果表明:... 相似文献
4.
随着石油天然气工业不断向深海、极地等极端开采环境发展,天然气水合物已经成为油气开采和输送安全的主要威胁之一。在水合物生成和分解机理、浆液流变特性以及流动压降特性三个方面分别综述了目前的相关研究进展,同时对天然气水合物今后的研究方向提出了几条建议。 相似文献
5.
天然气水合物巨大的储量和本身高储气量的特点,决定了其在能源和工业领域的重要作用。自然界中水合物赋存于沉积层多孔介质的孔隙中,因而研究其在多孔介质条件下的基础物性和快速生成,对水合物的工业应用具有重要意义。为此,本文采用了不同粒径的多孔氧化铝颗粒和实心二氧化硅颗粒,并将其与十二烷基硫酸钠(SDS)溶液进行复配,研究该体系中275.15K和7MPa条件下水合物的生成情况。结果表明:多孔介质与SDS复配体系中生成水合物的储气量大于纯SDS溶液中,二氧化硅颗粒和氧化铝颗粒分别在促进水合物成核和提升储气量方面效果显著;实验条件下颗粒粒径对于水合物生成的压降过程和相平衡条件影响不大;实验所处p H条件下,氧化铝表面会因为水解带正电,二氧化硅表面则会在极化和水合作用的共同影响下带负电,带电表面和SDS的相互作用能够促进水合物的生成;多孔介质孔隙产生的毛细作用力及其对体系传热条件的改善有助于水合物的贴壁生成。因此可以认为多孔介质与表面活性剂复配体系对水合物生成的促进效果明显,并且将多孔材料作为水合物生成的基质是一种提高储气量的有效方法。 相似文献
6.
7.
8.
9.
10.
11.
通过改变动力学抑制剂、过冷度、搅拌,借助生成实验装置,分析天然气水合物的生成效果,比较以上三个条件下的天然气水合物的生成速度和生成量,进而得出以上三个变量的对天然气水合物生成效果的贡献。结果表明:增加搅拌在天然气水合物生成过程中起主要作用,其次是过冷度以及动力学抑制剂。通过对水合物生成以及分解过程中压力-温度曲线的拟合,放缓反应釜内温度的升幅,可以得到更长更精确的拟合曲线。 相似文献
13.
为探讨表面活性剂十二烷基硫酸钠 (SDS)对新型蓄冷工质——异丁烷水合物快速生成的影响,利用自行设计的小型搅拌式水合物制备系统,在定容法实验条件下,比较无SDS情况下和不同SDS浓度情况下水合物的生成特性。实验结果表明: 与无SDS情况下相比,有SDS情况下的异丁烷水合物诱导时间缩短约18 min, 且水合物生成量较多,含气率较大,主要是SDS能有效降低水气界面的界面张力,增快气体分子进入水气界面层速率。此外,不同SDS浓度下(0.8×10-3、1.0×10-3和1.2×10-3)水合物生成诱导时间比较接近(约20 min),且水合物生成量趋于一致。 相似文献
14.
15.
16.
17.
18.
《化学工程》2021,49(8)
1 m~3甲烷水合物分解后释放0.8 m~3的水和172 m~3的甲烷,燃烧时产生的高热量和低污染使其是理想的烃类能源。但是,其储气量少、诱导时间长等问题,使水合物技术难以在工业上大范围使用。文中使用4 mm氧化铝颗粒,并将其与十二烷基硫酸钠(SDS)溶液混合。研究在275.15 K和7 MPa的条件下,通过改变酸碱度来观察水合物的生成情况,并以双电层理论为基础进行分析。研究表明:在此复配环境下,存在着最佳的酸碱度促进甲烷水合物的生成。在pH=4的情况下,水合物的储气密度和气体消耗量达到最大,储气密度为301.4 mol/mol,气体消耗量为0.538 mol。且无论酸碱度如何都不改变水合物的生成位置。同时酸碱度的改变,减少了水合物生成过程中的诱导时间。 相似文献
19.
高储气密度水合物的快速生成对气体水合物技术应用至关重要。将水与疏水性气相纳米二氧化硅和低剂量[0.1%~1.0%(质量)]的超吸水树脂在搅拌器中高速混合分散,制备出一种超吸水树脂改性的干水。该改性干水实质上是由高分子聚合物支撑且可自由流动的分散微滴堆。在8.0 MPa和274.2 K条件下,研究该改性微滴中甲烷水合物生成动力学特性。结果表明,松散的聚合物微滴极大地改善了液相连续水比表面积,为气体扩散至微滴表面提供了丰富的通道。水合物在聚合物微滴中快速生成,储气速率可达5.15~8.78 cm3·g-1·min-1,储气量高达158.0~175.0 cm3·g-1。质量分数为0.3%的微滴表现出最快储存速率和最高储气量,且其循环水合储气过程中前6次储气量均超过120 cm3·g-1。研究结果对水合物储运天然气技术规模化应用有一定的参考价值。 相似文献
20.
高储气密度水合物的快速生成对气体水合物技术应用至关重要。将水与疏水性气相纳米二氧化硅和低剂量[0.1%~1.0%(质量)]的超吸水树脂在搅拌器中高速混合分散,制备出一种超吸水树脂改性的干水。该改性干水实质上是由高分子聚合物支撑且可自由流动的分散微滴堆。在8.0 MPa和274.2 K条件下,研究该改性微滴中甲烷水合物生成动力学特性。结果表明,松散的聚合物微滴极大地改善了液相连续水比表面积,为气体扩散至微滴表面提供了丰富的通道。水合物在聚合物微滴中快速生成,储气速率可达5.15~8.78 cm3·g-1·min-1,储气量高达158.0~175.0 cm3·g-1。质量分数为0.3%的微滴表现出最快储存速率和最高储气量,且其循环水合储气过程中前6次储气量均超过120 cm3·g-1。研究结果对水合物储运天然气技术规模化应用有一定的参考价值。 相似文献