首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了壳聚糖(CS)粘结剂在锂离子电池硅碳负极中的性能。通过XRD、红外光谱和SEM表征粘结剂和电极的结构与形貌, 测试了粘结剂的剥离强度, 通过电化学性能和电极动力学比较了壳聚糖与聚偏氟乙烯(PVDF)作为粘结剂对硅碳复合材料电化学性能的影响。结果表明: CS粘结剂和PVDF粘结剂极片剥离强度分别为10.5和7.6 N/m, 水溶性高分子CS粘结力更强; CS、PVDF作为硅碳负极粘结剂首次可逆比容量分别为572.4和568.3 mAh/g, 首次库伦效率分别为78.4%和79.5%, 50次循环后容量保持率分别为72.3%和65.8%。与PVDF相比, CS更适合应用于锂离子电池硅碳负极材料中。  相似文献   

2.
通过溶剂热法和高温煅烧法得到ZnO修饰的碳布,并以此作为负极支架,使用热熔融法合成了Li-ZnO/CC复合负极材料。结果表明,ZnO颗粒能够降低锂的成核过电位,选择性调控锂沉积位置,使锂的生长得到初步控制,从而达到改善电池循环性能的效果。在对称电池和NCM523全电池中,Li-ZnO/CC复合负极材料的循环性能都优于裸锂箔; 在电流密度1 mA/cm2条件下,Li-ZnO/CC对称电池能保持至少400 h以上的稳定循环,并且保持10 mV左右的过电位; NCM523|Li-ZnO/CC全电池在0.3C下经过305次循环后,容量保持率仍有80.41%。Li-ZnO/CC复合负极材料是一种很有前途的可充电锂电池负极材料。  相似文献   

3.
为了解决氧化亚硅负极材料导电率低及循环性能差的问题,以聚丙烯酰胺(PAM)为液相碳源进行一次碳包覆,再通过化学气相沉积以甲烷混乙炔为气相碳源进行二次包覆,制备了具有含氮碳层的双层包覆氧化亚硅负极材料(SiOx@DC-N)。与纯气相包覆(SiOx@GC)以及纯液相包覆(SiOx@LC)的氧化亚硅负极材料相比,SiOx@DC-N展现出优异的倍率性能与循环性能,在4C(1C=1 500 mA/g)的电流密度下比容量达850.1 mAh/g,以5∶95混合石墨后制成18650圆柱电池,其在电流密度1C充放电700圈循环后容量保持率仍有92.70%。  相似文献   

4.
选择SiC复合材料(比容量600 mAh/g)混合人造石墨为负极,高镍三元正极材料(NCM)为正极,以EC+DMC+EMC(其中EC+DMC+EMC体积比1∶1∶1)为基础电解液,组装成2. 83Ah18650圆柱电池,考察FEC不同添加量对硅碳负极体系全电池性能影响。结果表明:FEC的加入对电池首次放电容量和库伦效率都有一定的提升,因为FEC先于碳酸酯类溶剂在负极表面形成薄且稳定的SEI膜,抑制碳酸酯类溶剂的分解及Si负极的氧化,其产物具有良好的柔性对Si负极体积膨胀具有一定的缓冲作用。经过对比,加入8%以上FEC电解液的电池表现出了较好的综合性能,首次放电容量达到2. 848 Ah,库伦效率82. 8%,循环100周后容量保持率97. 8%。  相似文献   

5.
以吉林某地高纯球形化隐晶质石墨为原料,利用石油沥青对其进行包覆-炭化改性处理,制备锂离子电池负极材料,考察了沥青碳包覆量对隐晶质石墨负极材料结构及电化学性能的影响。结果表明,沥青碳包覆层改善了隐晶质石墨的表面形貌,改性后的隐晶质石墨具有更好的循环充放电性能和倍率充放电性能。当包覆量为14%时,经30次循环充放电后试样的放电容量保持率较未改性试样提高8.88%。当包覆量为18%时,在1 C电流密度下,试样放电容量保持率较未改性试样提高69.12%。  相似文献   

6.
本论文通过磁控溅射技术使用高纯铝靶材在铜箔上沉积制备了铝薄膜,并通过X射线衍射仪、扫描电子显微镜和能谱仪对其组成和结构进行了表征,然后作为锂离子电池负极材料对其电化学性能进行了测试。结果表明铝薄膜由晶体的纳米颗粒组成,并且均匀的覆盖在铜箔表面。作为锂离子电池负极材料表现出2184 mAh/g的初始放电比容量,充放电10次后,可以维持80%的初始比容量。容量的衰减是由于在锂离子嵌入和脱出过程中,铝薄膜会发生大的体积膨胀和收缩,导致铝负极发生破裂粉化及结构崩塌。可以利用磁控溅射技术对铝薄膜厚度和结构进行调控,从而进一步提高锂离子电池铝薄膜负极的循环稳定性。  相似文献   

7.
掺杂钴和锌的β-Ni(OH)_2经氧化生成β-NiOOH,将其和电解二氧化锰混合作为正极活性物质,制成负极为锌粉的碱性电池,比较电池的放电性能及高温容量保持率,发现β-Ni(OH)_2改性材料的电性能有明显提高。  相似文献   

8.
氧化锌作为锂离子电池负极材料具有理论比容量高(978 mAh/g),来源广,环境友好和价格便宜等优势,是新一代高效环保的锂离子电池负极材料之一。然而氧化锌电极材料固有的电导率较低,不利于电池大电流充放电。并且在循环充放电过程中,易产生枝晶及周期性应力,导致材料体积膨胀或结构损坏,致使电池的循环性能衰减过快,容量保持率低。本文综述了改善氧化锌电化学性能的两种常用的策略:制备不同维度具有纳米结构的氧化锌电极材料;与碳材料、金属单质和金属氧化物等复合制备氧化锌复合电极,并对该类负极材料进一步研究、应用前景予以展望。  相似文献   

9.
锂离子电池碳负极材料研究进展   总被引:1,自引:0,他引:1  
综述锂离子电池碳负极材料的研究进展,主要包括中间相碳微球、天然石墨、无定形碳负极材料以及天然石墨表面改性.对天然石墨表面改性是改善锂离子电池负极材料性能的重要手段,通过改性处理,可有效降低石墨电极的不可逆容量,从而使可逆容最和库仑效率有较大程度的提高.由于表面改性天然石墨具有成本和性能方面的综合优势,是今后较长一段时间内,工业化应用的锂离子电池主要负极材料.  相似文献   

10.
碳基材料由于价格低廉、导电性良好及无毒安全等优势,成为钠离子电池中具有吸引力的负极材料,研究表明通过构筑利于电荷传输的动力学结构和引入杂原子进行掺杂,可改善其储钠离子的性能。采用模板法制备了氮掺杂中空碳纳米盒(NHCC),独特的中空纳米盒结构一方面能提供与电解质更大的接触面积,另一方面有利于离子的高效稳定传输。此外,NHCC材料引入氮原子能有效增加碳基材料的缺陷结构,为钠离子的储存提供更多的活性位点。研究结果表明,NHCC材料在电化学性能方面表现出优良的倍率性能(在电流密度2000 mA·g-1下容量为220.7 mAh·g-1)和良好的循环性能(在电流密度200 mA·g-1下循环400次后的可逆容量为255.7 mAh·g-1),同时通过动力学分析可得NHCC材料的表面赝电容行为有利于钠离子的存储。因此,氮掺杂中空碳纳米盒可为钠离子电池碳基负极材料提供新思路。  相似文献   

11.
通过向镍钴电池的电解液中加入不同浓度Na_2S_2O_3,并研究了其对镍钴电池负极材料电化学性能的影响,采用SEM和XRD分析了沉淀产物的微观形貌和结构。结果表明,通过对钴电极的充放电性能测试发现,当Na_2S_2O_3浓度为0.04mol/L时,Co电极的最大放电容量高达411.1mA·h/g,当Na_2S_2O_3浓度0.02mol/L时,Co电极的循环稳定性最好,其容量保持率为86.16%,比未加Na_2S_2O_3时的容量保持率高出30.71个百分点。结合循环伏安特性曲线(CV)和交流阻抗图谱(EIS)分析得知,Na_2S_2O_3能够有效抑制CoOOH的形成,提高活性物质的利用率,从而实现放电容量和循环稳定性的提高。  相似文献   

12.
氧化物基固态电池具备高能量密度与高安全性能的优势。然而,较大的界面阻抗是制约其发展的最大障碍。采用金属铝与聚氧化乙烯修饰层分别处理正负极界面的高阻抗问题,从而降低电池极化。在负极侧,由于铝与锂具有较高的反应活性,将界面阻抗由原始的632.5Ω/cm2降低至31.2Ω/cm2。在正极侧,由于聚氧化乙烯薄膜缓冲层具有较好的延展性,因此能够提供良好的界面柔性接触,使正极界面阻抗由原始的1 457.2Ω/cm2降低至60.3Ω/cm2;全电池总阻抗由最初的1 638.1Ω/cm2降低至298.7Ω/cm2。得益于界面阻抗的降低,钴酸锂/金属锂全电池的循环寿命获得显著提升,0.1C循环100圈后,容量保持率由最初的仅43.3%提升至95.1%。1C循环500圈后的容量保持率由未经处理的5.1%提升至72.3%。  相似文献   

13.
这是一篇矿物材料领域的论文。通过沥青包覆球形晶质石墨和炭化处理制备出锂离子电池负极材料,系统探究了沥青软化点对沥青炭化包覆球形晶质石墨负极材料结构和电化学性能的影响。结果表明,沥青炭化包覆后在石墨表面形成了一层无定形炭,改善了球形晶质石墨的表面形貌,但未改变其晶体结构;高沥青软化点包覆后的复合材料具有更好的电化学性能和循环稳定性,在温度为280℃条件下,经过30次循环充放电后容量没有明显的衰减,容量保持率为85.07%,比未处理的试样提高了4.74%。  相似文献   

14.
以均相共沉淀法制备的球形Ni0.5Co0.2Mn0.3(OH)2粉末为前驱体,按一定的比例将前驱体与碳酸锂混合,然后采用高温固相法合成高容量球形LiNi0.5Co0.2Mn0.3O2正极材料.XRD物相分析表明,在不同合成温度下的LiNi0.5Co0.2Mn0.3O2产物均为具有α-NaFeO2层状结构的纯相物质,在较高合成温度下所得材料的结晶度较高.SEM分析表明,LiNi0.5Co0.2Mn0.3O2正极材料与前驱体形貌有良好的继承性,均为理想的球形.电化学性能研究表明,在2.8~4.3 V的电压范围内,电池的放电比容量在0.2C倍率下为171.6 mA·h/g,在1C倍率下为158.1 mA·h/g;1C倍率下经300次循环后,电池容量保持率为84.3%,显示出良好的电化学性能.  相似文献   

15.
硅碳复合材料被认为是最具潜力的下一代高能量密度锂离子电池负极材料。然而,当前锂离子电池负极用高品质硅碳材料的制备过程复杂、硅源成本高造成其价格高昂,严重阻碍了硅碳复合材料在锂离子电池领域的规模化应用。采用低成本的切割废硅粉为硅源、人造石墨为碳源,采用简单的高能球磨法一步制备废硅粉-石墨复合材料(WSi-G)。系统研究了废硅粉的属性特征和硅碳复合材料的微观结构,所制备硅碳复合微粉的电化学性能。结果表明,微米尺寸的废硅粉直接用于锂离子电池时的负极循环性能快速衰减,采用球磨法制备的硅碳复合材料用于锂离子电池负极时展现出优异的循环稳定性,在0.5 A g-1电流密度下循环160圈后其可逆比容量仍然可以稳定在428 mA·h/g以上。  相似文献   

16.
以间苯二酚-甲醛树脂为碳源,采用原位聚合加碳化处理的方法 ,成功制备了碳包覆氧化锌负极材料。结果表明,纳米氧化锌表面的碳层厚度均匀,结构完整。延长碳化时间提高了碳层的石墨化度,升高碳化温度增加了碳层的缺陷。电化学测试考察了碳化时间和碳化温度对碳包覆氧化锌负极材料电化学性能的影响,当碳化时间由6h延长至10h,材料的电荷转移阻抗减小,初始放电容量由400mA·h/g提高到530mA·h/g,循环性能在8h时最好;当碳化温度由600℃提高至800℃,材料在700℃时的电荷转移阻抗最小,循环性能最优,85次循环后容量保持率为97.8%,因此最佳的碳化条件为700℃碳化8h。  相似文献   

17.
硅基负极材料因其高的比容量成为下一代锂离子电池负极研究的重点。通过概述硅基负极材料的研究进展,针对硅基材料在充放电过程中体积变化大、电池容量衰减快等缺点,从硅源的改性、硅碳复合材料的设计、氧化亚硅材料的改性等方面对其电化学性能进行提升;针对硅基材料的产业化现状及其制约因素,介绍了陕煤研究院在核壳结构硅碳负极材料,包埋结构硅碳负极材料,凹陷结构硅碳负极材料方面的研究进展及其产业化成果,并对硅基材料的研究方向和产业化进展进行了展望。  相似文献   

18.
锂离子电池在首次充放电过程中,其负极表面形成的固态电解质界面(SEI)膜会消耗部分正极材料的活性锂,导致不可逆的容量损失,降低锂离子电池能量密度。为解决此问题,选用氧化锂作为牺牲锂盐以补偿锂离子电池的首次不可逆容量损失,提高电池容量和循环性能。通过将催化剂LiMnO2、Li2O和导电炭黑(SP)按一定质量比研磨混合,制备了Li2O基正极补锂材料LiMnO2/Li2O/SP。为研究其补锂性能,选用磷酸铁锂作为正极,石墨作为负极,TCGG-Si作为电解液,组装了2032扣式全电池,通过充放电测试,研究了该正极补锂材料对电池电化学性能的影响。结果表明,当LiMnO2/Li2O/SP的质量分数分别为50%、45%和5%时,在 10 mA?g-1的电流密度下充电至4.3 V,LiMnO2/Li2O/SP 复合材料的首次充电比容量可达526.5 mAh?g-1,首次库伦效率为14.63%,其在首次充电过程中分解释放活性锂的过程是不可逆的,并在第4次后完全丧失容量,说明 Li2O/LiMnO2/SP复合材料可以作为补锂材料添加到正极材料中。将质量分数为3.6%的Li2O/LiMnO2/SP复合材料加入到磷酸铁锂半电池中,半电池的首次充电比容量为186.5 mAh·g-1,相较 LiFePO4比容量(166.8 mAh·g-1)提高了19.7 mAh·g-1,说明补锂剂已发挥作用,该部分多余的容量可用于形成石墨SEI膜。将Li2O/LiMnO2/SP添加到磷酸铁锂-石墨全电池体系中作为正极补锂剂,不仅可补偿石墨负极的首次不可逆容量损失,还可提高全电池的循环性能。全电池的首次可逆容量为158.2 mAh?g-1,循环100次的可逆比容量为108.0 mAh?g-1;相较于未添加情况,全电池首次充电比容量增加了12.9 mAh?g-1,可逆比容量提高了11.6 mAh?g-1,经100次循环后容量保持率提升了13.90%。  相似文献   

19.
田华玲  粟智 《矿冶工程》2016,(2):104-107
以Li_2CO_3、Fe_2O_3和TiO_2为原料,葡萄糖为碳源,采用高温固相法合成了锂离子电池LiFeTiO_4/C复合材料。采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)等手段对材料的晶体结构和形貌进行了表征,通过恒流充放电、循环伏安(CV)和交流阻抗对材料的电化学性能进行了测试。结果表明,碳包覆后的LiFeTiO_4负极材料循环性能优于未经碳包覆的材料。在室温下,充放电倍率为0.5C时,LiFeTiO_4/C负极材料的首次放电比容量为327.8 m Ah/g,循环50周后仍保持在308.3 m Ah/g。  相似文献   

20.
以四水合钼酸铵(AHM)、乙二醇(EG)为原料,采用水热法合成MoO2材料,用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试研究材料的结构和电化学性能。结果表明,水热法合成的MoO2粒径为20~30 nm,材料表现出良好的电化学性能。首次放电比容量为664.3 m A·h/g,充放电效率较高,首次充放电的库伦效率高达94%,在20个充放电循环过后,仍有较高的容量保持率,MoO2作为锂离子电池负极材料展现出良好的容量存储和循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号