首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
渗硅碳化硅材料的高温氧化   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了全碳粉反应渗硅碳化硅(PCRBSC)材料,在1300℃静态空气中的高温氧化行为.研究结果表明:PCRBSC材料的氧化过程遵循直线-抛物线规律,其结构对高温氧化有很大的影响,特别是游离硅fsi和游离碳fc的含量对氧化影响更大,fsi含量高的PCRBSC材料单位面积氧化增重(Δm/s)明显,fc含量高的PCRBSC材料氧化后表现为先减重后增重,氧化层断口经扫描电镜观察有明显的气孔存在.  相似文献   

2.
A study of the exposure of SiC at 1200°C and high water-vapor pressures (1.5 atm) has shown SiC recession rates that exceed what is predicted based on parabolic oxidation at water-vapor pressures of less than or equal to ∼1 atm. After exposure to these conditions, distinct silica-scale structures are observed; thick, porous, nonprotective cristobalite scales form above a thin, dense silica layer. The porous cristobalite thickens with exposure time, while the thickness of the underlying dense layer remains constant. These observations suggest a moving-boundary phenomenon that is controlled by the rapid conversion of dense vitreous silica to a porous, nonprotective crystalline SiO2.  相似文献   

3.
Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride   总被引:8,自引:0,他引:8  
This study provides new perspectives on why the oxidation rates of silicon carbide and silicon nitride are lower than those of silicon and on the conditions under which gas bubbles can form on them. The effects on oxidation of various rate-limiting steps are evaluated by considering the partial pressure gradients of various species, such as O2, CO, and N2. Also calculated are the parabolic rate constants for the situations when the rates are controlled by oxygen and/or carbon monoxide (or nitrogen) diffusion. These considerations indicate that the oxidation of silicon carbide and silicon nitride should be mixed controlled, influenced both by an interface reaction and diffusion.  相似文献   

4.
The oxidation of chemically vapor-deposited SiC in wet O2 (water vapor partial pressure = 0.01 MPa, total pressure = 0.1 MPa) was examined using a thermogravimetric technique in the temperature range of 1823 to 1923 K. The oxidation kinetics follow a linear-parabolic relationship over the entire temperature range. The activation energies of linear and parabolic rate constants were 428 and 397 kJ · mol−1, respectively. The results suggested that the rate-controlling step is a chemical reaction at an SiC/SiO2 interface in the linear oxidation regime, and the rate-controlling step is an oxygen diffusion process through the oxide film (cristobalite) in the parabolic oxidation regime.  相似文献   

5.
Polycarbosilane-derived SiC fibers (CG Nicalon, Hi-Nicalon, and Hi-Nicalon type S) were exposed for 1–100 h at 1273–1673 K in air. Oxide layer growth and changes in tensile strength for these fibers were examined after exposure. The three types of SiC fibers decreased in strength as the oxide layer thickness increased. Fracture origins were located near the oxide layer–fiber interface. The Hi-Nicalon type S showed better oxidation resistance than the other polycarbosilane-derived SiC fibers after exposure in air at 1673 K for 10 h. This result was attributed to the nature of the silicon oxide layer on the surface of the SiC fibers.  相似文献   

6.
The oxidation of SiC at 1200°C in a slowly flowing gas mixture of either air or air + 15 vol% H2O at 10 atm (1 MPa) was studied for extended times to examine the effects of elevated water-vapor pressure on oxidation rates and microstructural development. At a water-vapor pressure of 1.5 atm (150 kPa), distinct SiO2 scale structures were observed on the SiC; thick, porous, nonprotective cristobalite scales formed above a thin, nearly dense vitreous SiO2 layer, which remained constant in thickness with time as the crystalline SiO2 continued to grow. The pore morphology of the cristobalite layer differed depending on the type of SiC on which it was grown. The crystallization and growth rates of the cristobalite layer were significantly accelerated in the presence of the high water-vapor pressure and resulted in rapid rates of SiC surface recession that were on the order of what is observed when SiO2 volatility is rate controlling at high gas-flow velocities (30 m/s). The recession process can be described by a paralinear kinetic model controlled by the conversion of dense vitreous SiO2 to porous, nonprotective SiO2.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs) were coated with a SiC layer using SiO vapor. The growth mechanism of SiC and the oxidation resistance of the SiC-coated MWCNTs were studied. The growth of the SiC layer was controlled by adjusting the partial pressure of CO2 using carbon felt placed in a crucible. The nanometer-sized SiC particles were deposited onto the tubes by the reaction between SiO( g ) and CO( g ). On the other hand, the thin surface of the MWCNTs was converted to the SiC layer when the carbon felt was not used. The oxidation durability of MWCNTs was improved by the SiC coating. MWCNTs were oxidized completely in air at 650°C for 60 min. However, about 90 mass% of the SiC-coated MWCNTs remained after the same oxidation test.  相似文献   

8.
Three types of polycarbosilane-derived SiC fibers (Nicalon, Hi-Nicalon, and Hi-Nicalon S) with different SiO2 film thicknesses ( b ) were subjected to exposure tests at 1773 K in an argon-oxygen gas mixture with an oxygen partial pressure of 1 Pa. The suppression effect of a SiO2 coating on active oxidation was examined through TG, XRD analysis, SEM observation, and tensile tests. All the as-received fibers were oxidized in the active-oxidation regime. The mass gain and the SiO2 film development showed a suppression of active oxidation at b values of ≧0.070 μm for Nicalon, ≧0.013 μm for Hi-Nicalon, and ≧0.010 μm for Hi-Nicalon S fibers. Considerable strength was retained in the SiO2-coated fibers. For Hi-Nicalon fibers, the retained strength was 71%–90% of the strength in the as-received state (2.14–2.69 GPa).  相似文献   

9.
At high temperatures in clean oxidizing environments, SiC forms a very protective SiO2 film, but, in environments containing low levels of gaseous alkali salt contaminants or where condensed salts may deposit on the surface, the resistance of the film is significantly reduced. Oxidation kinetics of SiC were measured by continuous thermogravimetric analysis in a controlled environment containing CO2, H2O, and O2 plus low levels of potassium-containing salts. Potassium was found to be incorporated into the SiO2 scale and to significantly change its transport properties and its morphology. The rate of scale formation was found to increase directly in proportion to K in the scale. A change in mechanism was observed when water vapor was added to the reacting gas stream.  相似文献   

10.
Polycarbosilane-derived low-oxygen SiC fibers, Hi-Nicalon, were heat-treated for 36 ks at temperatures from 1273 to 1773 K in CO2 gas. The oxidation of the fibers was investigated through the examination of mass change, crystal phase, resistivity, morphology, and tensile strength. The mass gain, growth of β-SiC crystallites, reduction of resistivity of the fiber core, and formation of protective SiO2 film were observed for the fibers after heat treatment in CO2 gas. SiO2 film crystallized into cristobalite above 1573 K. Despite the low oxygen potential of CO2 gas ( p O2= 1.22 Pa at 1273 K − 1.78 × 102 Pa at 1773 K), Hi-Nicalon fibers were passively oxidized at a high rate. There was a large loss of tensile strength in the as-oxidized state at higher temperatures because of imperfections in the SiO2 film. On the other hand, the fiber cores showed better strength retention even after oxidation at 1773 K.  相似文献   

11.
Five silicon carbide ceramics with various additives were evaluated for oxidation resistance at 1300°C in flowing dry and wet air. In the dry atmosphere, the oxidation of the five samples was diffusion-controlled, and in wet atmosphere they exhibited a linear relation beween weight gain by oxidation and water vapor content. Water vapor in the atmosphere strongly accelerated oxidation. The influence of oxidation on room-temperature strength was complex, but the samples were not as affected by oxidation.  相似文献   

12.
Volatility diagrams—isothermal plots showing the partial pressures of two gaseous species in equilibrium with the several condensed phases possible in a system—are discussed for the Si-O and Si-N systems, and extended to the Si-N-O and Si-C-O systems, in which the important ceramic constituents SiO2, Si3N4, Si2N2O, and SiC appear as stable phases. Their use in understanding the passiveactive oxidation transitions for Si, Si3N4, and SiC are demonstrated.  相似文献   

13.
The oxidation behavior of chemically vapor deposited (CVD) SiC at high temperature was investigated using a thermogravimetric technique in the temperatures range of 1823 to 1948 K. The specimens were prepared by chemical vapor deposition using SiCl4, C3H8, and H2 as source gases. The oxidation behavior of the CVD-SiC indicated "passive" oxidation and a two-step parabolic oxidation kinetics over the entire temperature range. The crystallization of the SiO2 film formed may have caused this two-step parabolic behavior. The parabolic oxidation rate constant ( K p) varied with the square root of the oxygen partial pressure ( P 1/2O2). The activation energy for the oxidation was determined to be 345 and 387 kJ · mol−1. These values suggest that the diffusion process of the oxygen ion which passes through the SiO2 film is rate-controlling.  相似文献   

14.
以微米硅(Si)和纳米碳黑(Cp)粉体为主要原料,采用经机械化学法合成的碳化硅(SiC)和15%和25%的纳米碳颗粒与碳化硅(Cp-SiC)的复合粉体,并经无压烧结得到了Cp/SiC陶瓷基复合材料,分析了在不同温度条件下Cp/SiC烧结体的氧化行为。结果表明:当温度小于700℃时,Cp/SiC复合陶瓷在空气中的氧化受C—O2反应控制,致使其为均匀氧化;700℃时,氧化后的复合材料显气孔率最大,弯曲强度达极小值;大于700℃,氧化过程受O2的气相扩散控制,呈非均匀氧化;700~900℃之间,O2通过微裂纹的扩散控制着Cp/SiC的氧化过程;900~1 100℃之间,O2通过SiC缺陷的扩散控制着Cp/SiC的氧化过程,并在1 000℃时的最初的2 h内,复合材料弯曲强度增大,且达到了极大值。同时表明,纳米碳含量是影响复合材料强度及氧化行为的关键因素,添加纳米碳质量分数为15%的Cp/SiC复合陶瓷可以作为一种抗氧化性能优良的玻璃夹具材料。  相似文献   

15.
The active-to-passive transition in the oxidation of SiC and Si3N4 was determined in a flowing air environment as a function of temperature and total pressure. The experimentally observed transition temperatures ranged from a low of 1347°C to a high of 1543°C for partial pressures of oxygen of 2.5 and 123.2 Pa, respectively. The SiC and Si3N4 samples had approximately the same transition point for a given pressure. In general, the higher the flow rate, the higher the transition temperature for a given pressure. The transitions for SiC measured in this study agree with previous data for the transition of SiC measured in pure oxygen at reduced pressures and in oxygen inert gas mixtures.  相似文献   

16.
碳化硅基材料具有优良的高温性能,但作为非氧化物陶瓷,碳化硅材料的高温氧化造成的性能衰减限制了其进一步的广泛应用.本文通过分析碳化硅的氧化机理,对比和总结了碳化硅抗氧化涂层的制备方法和涂层体系,并结合实际工作对碳化硅抗氧化涂层的研究提出了具体的见解.  相似文献   

17.
Burner Rig Hot Corrosion of Silicon Carbide and Silicon Nitride   总被引:1,自引:0,他引:1  
A number of commercially available SiC and Si3N4 materials were exposed to 1000°C for 40 h in a high-velocity, pressurized burner rig as a simulation of an aircraft turbine environment. Na impurities (2 ppm) added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si3N4, and formation of substantial Na2O. x (SiO2) corrosion product. Room-temperature strength of the materials decreased as a result of the formation of corrosion pits in SiC and grain-boundary dissolution and pitting in Si3N4.  相似文献   

18.
碳化硅基材表面涂层方法综述   总被引:4,自引:1,他引:4  
碳化硅基陶瓷是应用于高温工作环境下的理想材料,但其高温氧化影响了它的进一步应用。本文简要叙述了碳化硅材料的氧化机理,重点总结了在其表面涂层的各种方法。同时也对目前所做工作的不足提出了见解。  相似文献   

19.
Two sintered SiC-based materials were heat-treated for 150 h at 1300°C in a nitrogen-based gas (1.2% H2, 0.6% CO) at a total pressure of 130 Pa. Sintered SiC samples were also preoxidized and then exposed to this gas under the same conditions to evaluate the protective nature of an SiO2 scale. In this atmosphere, SiO gas and cyanogens are predicted to form, rather than SiO2. Experimental studies confirmed that etching of sintered SiC occurs. Preoxidation does not provide protection from etching, because of the rapid removal of SiO2 by H2 as H2O and SiO.  相似文献   

20.
The isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering was studied in the temperature interval 800° to 1400°C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted for T ≤ 1300°C, presumably because of crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号