首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
负荷预测的精确与否直接影响智能电网规划等诸多决策问题,而在一些经济欠发达的地区,由于存在一定比例的冲击性负荷而使得负荷具有较大的波动性,对负荷预测精度存在一定的影响,而常用的负荷预测方法在处理这类负荷时均存在一定的缺陷。提出基于Savitzky-Golay滤波器的冲击性负荷短期预测方法,先对冲击负荷数据进行预处理,运用处理后的数据进行负荷组合预测,与未处理数据的预测结果进行对比,结果可见该方法可以有效地消除冲击负荷对负荷预测的影响,提高负荷预测的精度,简单易懂,使用方便,具有较好的实用价值。  相似文献   

2.
基于粒子群模糊神经网络的短期电力负荷预测   总被引:3,自引:0,他引:3  
为了从根本上提高短期电力负荷预测中神经网络的速度和预测精度,提出了将粒子群算法和BP算法相结合的短期负荷预测方法。用粒子群算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法,实现短期负荷预测。在构建网络模型时,考虑了气候、温度等因素的影响,并把它们进行模糊化处理后作为网络的输入。仿真结果表明基于这一方法的负荷预测系统具有较高的精度和实时性。  相似文献   

3.
大容量冲击负荷的短期预测研究   总被引:2,自引:0,他引:2  
针对大容量冲击负荷的特点,提出了一种新的短期负荷预测方法,即以历史数据为依据,用统计方法得出冲击负荷的典型曲线。仿真结果表明,这种方法能较准确地预测冲击负荷的变化趋势,是可行的  相似文献   

4.
李凯  刘金海  陆岩 《电力学报》2011,26(6):466-469,475
针对电力系统短期负荷随机性和偶然性较大,使得传统的卡尔曼滤波或者扩展卡尔曼算法不能发挥最优的滤波效果的问题,建立了基于粒子滤波算法的负荷预测模型,并讨论了参数选择对预测结果的影响,给出了优化的状态参数选择区间.通过对仿真验证了本文方法的有效性,最后将本文的方法与卡尔曼滤波算法进行了对比仿真,仿真结果证明本文提出的方法具...  相似文献   

5.
在分析支持向量机SVM(Support Vector Machine)回归估计方法参数性能的基础上,提出粒子群算法PSO(Particle Swarm Optimization)优化参数的SVM短期电力负荷预测模型.PSO算法是一种新型的基于群体智能的随机优化算法,简单易于实现且具有更强的全局优化能力.用所建立的负荷预测模型编制的Matlab仿真程序,对某实际电网进行了短期负荷预测,结果表明预测精度更高.  相似文献   

6.
基于粒子群支持向量机的短期电力负荷预测   总被引:9,自引:3,他引:9       下载免费PDF全文
在分析支持向量机SVM(Support VectorM ach ine)回归估计方法参数性能的基础上,提出粒子群算法PSO(Partic le Swarm Optim ization)优化参数的SVM短期电力负荷预测模型。PSO算法是一种新型的基于群体智能的随机优化算法,简单易于实现且具有更强的全局优化能力。用所建立的负荷预测模型编制的M atlab仿真程序,对某实际电网进行了短期负荷预测,结果表明预测精度更高。  相似文献   

7.
8.
针对现有Volterra滤波器模型按混沌轨道逐点训练的模式易发生训练不充分或过拟合现象并最终影响短期负荷预测效果的问题,提出了依据相空间邻近轨道演化相似性特点,建立基于高阶非线性Volterra滤波器(HONFIR)的短期负荷预测多步预测模型(MSF-HONFIR).通过定义距离相似度、趋势相似度来衡量轨道演化相似性,提出了负荷吸引子邻近轨道判别的新方法.在MSF-HONFIR模型基础上将原始负荷序列分解为多个子序列并分别对各个子序列建立预测模型,显著削弱了系统累积误差.短期负荷预测仿真结果表明MSF-HONFIR模型的多步预测性能优于原有HONFIR模型.  相似文献   

9.
针对目前短期负荷预测准确率不高的情况,以秦皇岛电网为例,介绍典型日负荷曲线特点和分类,分析各类负荷曲线的特点及其适合的预测方法,提出基于负荷分类的短期负荷预测方法,并结合实例,验证了该方法的实用性.  相似文献   

10.
提出一种基于资源分配网络(RAN)的短期负荷预测方法,该方法通过对样本的学习,动态地增加隐层节点数目,并采用扩展卡尔曼滤波器对网络参数进行调整。RAN网络结构紧凑,具有学习速度快、精度高的优点。本文考虑了综合考虑温度、日期类型和天气等因素对短期电力负荷的影响。实际算例表明:该方法同BP网络相比,具有较高的预测精度,证明了该方法的有效性。  相似文献   

11.
作为能量管理系统的一项重要组成部分,准确的短期电力负荷预测对现代电力系统安全可靠的经济运行有重要作用.为提高预测精度,新的预测模型在不断研究中.设计了广州电网自动运行的短期负荷预测系统的结构及其实现方案;对系统的功能设计、数据库接口、体系结构以及系统配置等进行了介绍;最后,研究了短期负荷预测的自学习、自适应和反馈机制.  相似文献   

12.
钟惠锋 《广东电力》2011,24(6):97-100
以广东珠海电网为例,对负荷特性、经济发展特点、气候变化、预测技术等影响负荷预测的因素进行分析,提出提高电网短期负荷预测精度的措施:建立和完善典型日负荷样本数据库;特殊事件造成负荷较大变化时进行人工干预;合理做好负荷日的类型分析;采用扩展短期负荷预测方法进行明日负荷预测;建立气象负荷数据源预测模型.这些措施在珠海电网中应...  相似文献   

13.
基于灰色生成的卡尔曼滤波短期负荷预测   总被引:2,自引:0,他引:2  
根据灰色系统理论数据生成方式,提出了利用负荷级比累加序列进行卡尔曼滤波短期负荷预测的方法,以减小数据波动对预测精度的影响.首先依据移动时间窗原理对预测点附近的历史负荷数据进行提取,再采用级比和累加生成方式对提取数据进行处理,最后运用卡尔曼滤波算法对负荷级比序列累加值进行预测,并通过还原算法得到所需预测时刻的负荷值.对实际电网的负荷数据进行为期一周的仿真分析,其结果表明了该方法比基本的移动时间窗滤波算法具有更好的预测效果.  相似文献   

14.
基于时序分析的神经网络短期负荷预测模型研究   总被引:4,自引:1,他引:4  
卢建昌  王柳 《中国电力》2005,38(7):11-14
在负荷预测中,历史负荷数据产生的复杂性和许多不确定因素影响的随机性,使观测到的数据既包含线性部分,又包含许多非线性部分,因此所建立的预测模型就必须综合考虑这2方面的因素。目前常用的预测技术很少能综合考虑这两方面的因素.预测精度选不到要求。本文提出了一种时序分析和神经网络结合的预测方法。由于时序模型中不同阶数的自回归移动平均适合线性预测,可利用自回归移动平均模型(ARMA)处理历史负荷数据中的线性部分;而神经网络模型适合非线性预测,可利用人工神经网络(ANN)模型处理历史负荷数据的非线性部分:这样所建立的模型有机地结合了历史负荷中的线性因素和非线性因素.利用不同模型的优势来处理数据的不同部分,使得预测结果更为准确。实证证明。ARMA-ANN组合预测能提高负荷预测的精度。  相似文献   

15.
应用Kalman滤波方法的超短期负荷预报   总被引:11,自引:0,他引:11  
几分钟到一小时的超短期负荷预报在电网在线控制中占有重要地位。本文将Kalman滤波方法应用于超短期负荷预测,并在预报过程中引入极大似然估计进行模型未知参数辨识,达到了参数估计过程与预报过程的统一。并给出本算法在几个电网中的实际应用情况及算例分析。  相似文献   

16.
混合粒子群优化的BP网络在电力负荷预测中的应用   总被引:1,自引:0,他引:1  
提出了混合粒子群算法和BP算法相结合的短期负荷预测方法,有效地克服了人工神经网络学习速度慢、存在局部极小点的固有缺陷。与传统神经网络方法相比,该方法可加快网络学习速度和提高学习精度。用混合粒子群算法来训练网络参数,直到误差趋于一稳定值,然后将优化的权值用BP算法处理,实现短期负荷预测。  相似文献   

17.
受限于数据信息的不完整和粗粒度,短期网供负荷预测的准确率一直难以进一步提升,而配用电信息系统数据的积累和大数据技术的快速发展为开展基于配用大数据的短期负荷预测提供了数据基础和技术支撑。本文首先针对配用电大数据的特征分析了\"脏数据\"的来源与类型,并提出了相应的数据清洗方法;其次基于大量的历史负荷、电量和气象数据,构建了行业负荷温度影响模型和行业电量节假日影响模型;最后基于上述用电影响模型开展了江苏电网短期网供负荷预测,实际计算结果验证了预测效果的有效性和准确性。  相似文献   

18.
结合神经网络和专家库系统对地区电网进行短期负荷预测,利用神经网络的非线性函数逼近能力进行基本负荷预测,在此基础上结合天气专家库系统再进行负荷调整。此方法已用于地区电网负荷预测,预测结果表明此方法是实用有效的,精度满足实用要求。  相似文献   

19.
在混沌理论中,负荷预测模型的建立通常由一单变量时间序列的相空间重构来实现,然而在实际过程中往往难以确定单变量时间序列是否包含了重构动力系统的全部信息,特别是在有限时间序列存在噪声时。因此,本文将单变量时间序列方法拓展到多变量时间序列中,进行多变量时间序列的相空间重构,计算了各时间序列的延迟时间和嵌入维数,建立了局域线性预测模型。预测结果检验显示,该方法具有较好的预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号