首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To regulate expression of a transferred gene in response to an exogenous compound, we have combined a high capacity adenoviral vector devoid of all viral coding sequences with a regulatory system that can be used to express a target gene in vivo in a selected site and at a desired time. This system uses a chimeric transactivator, GLp65, which consists of a mutated progesterone receptor-ligand binding domain fused to the GAL4 DNA binding domain and part of the activation domain of the human p65 protein, a component of the NF-kappaB complex. In the presence of the antiprogestin mifepristone, this chimeric regulator binds to a target gene containing the 17-mer GAL4 binding site, resulting in an efficient ligand-inducible transactivation of the target gene. We inserted the regulator GLp65 and a regulable human growth hormone target gene containing the 17-mer GAL4 binding site into the same adenoviral vector. To obtain tissue-specific expression of the target gene, we coupled the regulator to a liver-specific promoter. Infection of HepG2 cells and experimental mice with the adenovirus resulted in consistently high induction levels of human growth hormone in the presence of mifepristone whereas the transgene expression was undetectable in the absence of the ligand. Taken together, our regulable adenoviral vector represents an important tool for transgene regulation that can be used for potentially diverse applications, ranging from tissue-specific gene expression in transgenic animals to human gene therapy.  相似文献   

2.
A number of preclinical and human clinical gene therapy trials using adenoviral vectors have shown that the number of viral particles necessary to give adequate levels of gene transfer can be associated with significant vector-related toxicity. In an effort to reduce the number of adenoviral particles required for a given level of gene transfer, we sought to redirect adenoviral infection via a receptor that is highly expressed on the target cells. By using basic fibroblast growth factor (FGF2) as the targeting ligand, adenovirus-mediated gene transfer to the human ovarian cancer cell line SKOV3.ip1 was significantly enhanced, permitting the transduction of a greater number of target cells to be achieved by a given dose of virus. In a murine model of human ovarian carcinoma, an FGF2-redirected adenoviral vector carrying the gene for herpes simplex virus thymidine kinase (AdCMVHSV-TK) was shown to result in a significant prolongation of survival compared with the same number of particles of unmodified AdCMVHSV-TK. In addition, equivalent survival rates were achieved with a 10-fold lower dose of the FGF2-redirected AdCMVHSV-TK compared with the unmodified vector. To our knowledge, this is the first report demonstrating that strategies to enhance the efficiency of in vivo transduction of adenoviral vectors will be of clinical utility.  相似文献   

3.
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease, caused by deficiency of arylsulfatase A (ASA), that manifests primarily in the white matter of the nervous system. Currently, no specific treatment exists that will reverse its fatal outcome. Replacement therapy has been hampered by the blood-brain barrier (BBB). To circumvent this problem we designed an ex vivo gene therapy strategy that includes the retrovirus-mediated ASA transduction of cells, such as activated lymphocytes, that are able to traverse the BBB or other membranes of the CNS. For this purpose, two recombinant retroviruses based on the pLXSN vector were produced, containing the wild-type ASA cDNA or a pseudodeficiency ASA cDNA, which encodes a smaller enzyme with normal activity. After transduction, ASA activity increased more than 100-fold in fibroblasts from an MLD patient. Furthermore, ASA-transduced MLD PBLs expressed 30 times higher ASA activity when compared with control PBLs. Moreover, cell culture experiments demonstrated that transduced fibroblasts could efficiently transfer ASA to deficient cells across a transwell barrier, whereas transduced MLD lymphocytes could transfer ASA to deficient fibroblasts only by direct cell-to-cell contact. Finally, ASA was taken up by normal oligodendrocytes and Schwann cells, the target myelinating glial cells for therapy in MLD. These data suggest possible short-term strategies for transfer of ASA into the CNS via transduced autologous cells while long-term strategies, related to autologous transduced bone marrow transplant, take effect in patients.  相似文献   

4.
Retroviral infection is restricted by the expression of a viral receptor on the surface of the target cell. Retrovirus-mediated gene transfer is therefore not possible in cells that fail to express sufficient levels of the appropriate receptor, representing one major obstacle to the use of recombinant retroviruses in experimental and clinical applications. In this study, we utilized an adenoviral vector to express transiently the receptor for the ecotropic murine leukemia virus in a panel of human cell lines. Following adenoviral infection, the susceptibility to ecotropic retroviral particles of A549, HeLa, RC39 and Meso 33 cells, derived from human lung epithelium, cervical epithelium, kidney and mesothelium, respectively, was measured on a single-cell basis by the detection of a cell surface marker encoded by the recombinant retrovirus. The marker, termed NTP, was found in 10-30%, 25-50% and 50-90% of cells infected at 5, 50 and 250 adenovirus multiplicity of infection, respectively. Southern blot analysis demonstrated the integration of intact retroviral DNA. The integrated vector copy number increased with the adenoviral multiplicity of infection, suggesting that retrovirus infection is proportional to receptor expression by the target cell, albeit not in a linear fashion. Susceptibility to ecotropic retroviral infection was maintained undiminished for at least 3 days, indicating the persistent expression of ecotropic receptor by the adenovirus-transduced cells in that time period and the lack of a major cellular defense triggered by adenovirus infection against the subsequent retroviral infection. Thus, the infection of human cells of various tissues with a recombinant adenovirus expressing the ecotropic murine leukemia virus receptor generates a window of susceptibility where a high retroviral infection rate can be achieved. Increased efficiency of retroviral infection obtained in this fashion is amenable to specific regulation via the controlled expression of the adenovirus-encoded retroviral receptor.  相似文献   

5.
Optimal gene therapy for many disorders will require efficient transfer to cells in vivo, high-level and long-term expression, and tissue-specific regulation, all in the absence of significant toxicity or inflammatory responses. While recombinant adenoviral vectors are efficient for gene transfer to hepatocytes, their usefulness is limited by short duration of expression related, at least in part, to immune responses to viral proteins and by a low capacity for foreign DNA. A number of systems have been developed for producing adenoviral vectors devoid of all viral coding sequences. Using AdSTK109, a vector lacking all viral coding sequences and carrying the complete human alpha1-antitrypsin (hAAT) genomic DNA locus, we have demonstrated sustained expression for longer than 10 months in mice. Utilizing high doses of this vector for hepatic gene transfer in mice, we find that supraphysiological levels of hAAT can be achieved without hepatotoxicity.  相似文献   

6.
7.
Targeted gene transfer into hematopoietic stem cells by retroviral vectors would greatly facilitate the development of in vivo strategies for stem cell gene therapy. We engineered a recombinant retroviral vector that can target human cells expressing a c-Kit receptor via a ligand-receptor interaction. The ecotropic (Moloney murine leukemia virus) envelope protein was modified by insertion of a sequence encoding the N-terminal 161 amino acids of murine stem cell factor (mSCF), the ligand for murine c-Kit. The chimeric envelope protein was correctly processed and incorporated into viral particles as efficiently as the wild-type envelope protein. Virions pseudotyped with the chimeric envelope proteins bound to 293 cells expressing murine c-Kit (293KIT) preferentially; however, they could not transduce any c-Kit-positive cells under conventional conditions. They could transduce 293KIT cells in the presence of chloroquine, and HEL cells expressing human c-Kit on a fibronectin fragment (CH296)-coated dish. The fact that recombinant mSCF in the medium at the time of transduction greatly reduced the efficiency of both gene deliveries implies that the vector utilized the mSCF-c-Kit interaction for the initial step of transduction in either case. The vector may prove useful for targeting cells expressing c-Kit on their surface.  相似文献   

8.
The intestinal tract has many features that make it an attractive target for therapeutic gene transfer. In this study, replication-defective adenoviral vectors were used to explore parameters that may be important in administering gene therapy vectors to the intestine. After surgically accessing the intestine, an E1-, E3-deleted adenoviral vector encoding beta-galactosidase (beta-Gal) was directly injected into various regions of the small and large intestine of rats and rabbits. Significant transduction of the tissue was observed and histochemical staining was used to identify enterocytes as the primary targets of gene transfer. Expression of beta-Gal did not differ substantially when the virus was administered to the duodenum, ileum, or colon. When the vector was directly administered to segments of the distal ileum containing a Peyer's patch, transgene expression was approximately 10-fold higher than in segments lacking a Peyer's patch. In the Peyer's patches, a high level of expression was localized to epithelial cells, potentially M cells, overlying the lymphoid follicle domes. Transduction of these cells could have application in DNA-mediated oral vaccination. Administration of an adenoviral vector encoding a secreted alkaline phosphatase to the lumen resulted in expression and secretion of this gene product into the circulation. This finding demonstrates the potential of enterocytes to serve as heterotopic sites for the synthesis of heterologous gene products that would be secreted into the lumen of the intestinal tract or into the bloodstream.  相似文献   

9.
Gene transfer is an exciting new tool in medical therapy and scientific investigation, but only very recently has it begun to be developed in the auditory system. This paper describes in vivo and ex vivo experiments using an adenoviral vector (Ad. RSVntlacZ), which is a replication-deficient virus based on a human adenoviral (serotype 5) genomic backbone. The in vivo experiments demonstrate successful gene transfer into multiple types of cochlear cells. We observed a relatively efficient transduction, several weeks of sustained transgene expression and an absence of major lethal cytotoxicity in spiral ganglion and epithelial cells of the cochlea in adult animals. The ex vivo experiments were performed using fibroblasts transduced in vitro with Ad. RSVntlacZ. Two weeks after inoculation of the fibroblasts into the perilymph, we observed transplanted fibroblasts, which were adherent to the lining of the perilymphatic spaces, and were expressing the lacZ transgene. We speculate that, as the genetic basis of degenerative cochlear diseases is characterized on a mutational level, transgene expression will allow us to test hypotheses regarding the effects of specific genes on cochlear cell biology. Gene transfer will not only increase our understanding of the pathophysiology of hearing loss, but also may provide gene therapy for disease.  相似文献   

10.
BACKGROUND: The p53 tumor suppressor gene is mutated in up to 70% of pancreatic adenocarcinomas. We determined the effect of reintroduction of the wild-type p53 gene on proliferation and apoptosis in human pancreatic cancer cells using an adenoviral vector containing the wild-type p53 tumor suppressor gene. METHODS: Transduction efficiencies of six p53-mutant pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, CFPAC-1, MIA PaCa-2, and PANC-1) were determined using the reporter gene construct Ad5/CMV/beta-gal. Cell proliferation was monitored using a 3H-thymidine incorporation assay, Western blot analysis for p53 expression was performed, and DNA laddering and fluorescence-activated cell sorter analysis were used to assess apoptosis. p53 gene therapy was tested in vivo in a subcutaneous tumor model. RESULTS: The cell lines varied in transduction efficiency. The MIA PaCa-2 cells had the highest transduction efficiency, with 65% of pancreatic tumor cells staining positive for beta-galactosidase (beta-gal) at a multiplicity of infection (MOI) of 50. At the same MOI, only 15% of the CFPAC-1 cells expressed the beta-gal gene. Adenovirus-mediated p53 gene transfer suppressed growth of all human pancreatic cancer cell lines in a dose-dependent manner. Western blot analysis confirmed the presence of the p53 protein product at 48 hours after infection. DNA ladders demonstrated increased chromatin degradation, and fluorescence-activated cell sorter analysis demonstrated a four-fold increase in apoptotic cells at 48 and 72 hours following infection with Ad5/CMV/p53 in the MIA PaCa-2 and PANC-1 cells. Suppression of tumor growth mediated by induction of apoptosis was observed in vivo in an established nude mouse subcutaneous tumor model following intratumoral injections of Ad5/CMV/p53. CONCLUSIONS: Introduction of the wild-type p53 gene using an adenoviral vector in pancreatic cancer with p53 mutations induces apoptosis and inhibits cell growth. These data provide preliminary support for adenoviral mediated p53 tumor suppressor gene therapy of human pancreatic cancer.  相似文献   

11.
Although adenoviral vectors are attractive for gene transfer, their effectiveness is limited by host antiviral immune responses. In this study, we determined if host antiallograft and antiviral immunity could be diminished with an adenoviral vector encoding the immunosuppressive cytokine viral interleukin-10 (vIL-10). AdSV40vIL-10, a vIL-10-expressing adenoviral vector with an SV40 promoter, induced significant prolongation of murine cardiac allograft survival to 32.2 +/- 1.7 days compared to 14.2 +/- 1.0 days for controls (p < 0.01). This effect was specific for vIL-10 encoding vector and could be inhibited by anti-vIL-10 monoclonal antibody (mAb). In vivo administration of adenovirus facilitated the generation of adenovirus-specific cytotoxic T lymphocytes (CTL), whereas treatment with AdSV40vIL-10 prevented CTL priming and generation of virus-specific immunity. AdSV40vIL-10 also induced extended expression of a beta-galactosidase reporter from a co-injected LacZ-encoding adenoviral vector. These results demonstrate that adenovirus-mediated gene transfer and expression of vIL-10 prolong allograft survival and inhibit the immune response to adenoviral antigens, thereby improving the persistence of the vector and extending transgene expression. The efficacy of adenoviral vectors can be improved by incorporating immunosuppressive genes into the vector.  相似文献   

12.
In preparation for foetal gene therapy by intra-amniotic gene application, we have investigated the effect of amniotic fluid on several gene transfer systems. In vitro lipofection of embryonically derived 3T3 cells by several of the tested cationic lipids decreases in the presence of human amniotic fluid, while two formulations, Lipid 67 and Tfx-50, remain highly active. As some body fluids are known to inactivate most retroviral vectors, we investigated the influence of amniotic fluid on the efficiency of infection of 3T3 cells by murine leukaemia virus (MoMLV)-based vectors, including amphotropic and ecotropic retrovirus, and a vesicular stomatitis virus G (VSV-G) glycoprotein pseudotyped retroviral vector. All showed a decrease of infectivity from 21 to 56% in the presence of amniotic fluid. The ecotropic retrovirus is the most infectious under normal conditions as well as in amniotic fluid. Our results suggest that intra-amniotic injection may allow efficient gene transfer using either amniotic fluid-resistant cationic lipids or ecotropic retroviral vectors in a murine in vivo model for foetal gene therapy. The VSV-G-pseudotyped vector, although displaying a decrease of infectivity, remains of great interest for gene delivery, because of its broad host range and because of the high virus titers achievable. Finally, a baculovirus-based vector shows no decrease of its infectivity and does not seem to be affected by amniotic fluid but has only low infectivity on the tested foetal fibroblast cell line.  相似文献   

13.
Gene transfer is a potentially powerful tool for the treatment of a wide variety of diseases. The transfer of these genes is achieved by utilizing a variety of vectors, including retroviral, adenoviral, adeno-associated virus (AAV) and a number of non-viral mechanisms. Numerous studies have successfully demonstrated transduction of genes into target cells with a variety of vectors, and have provided 'proof-in-principle' that gene transfer can result in prolonged in vivo expression of transduced genes, albeit at low quantities. Furthermore, gene marking studies in acute myeloblastic leukemia (AML), chronic myeloid leukemia (CML) and neuroblastoma have elegantly demonstrated that gene-marked tumor cells contribute to relapse following autologous transplantation. However none of the studies examining the therapeutic benefit of gene therapy has definitively demonstrated a clinically meaningful benefit. Nonetheless, the results of studies involving gene transfer for severe combined immunodeficiency (SCID), chronic granulomatous disease (CGD), melanoma and lung cancer highlight the potential benefit of this strategy. This review will discuss mechanisms of achieving gene transfer into target cells. It will examine some of the pre-clinical and clinical results to date and will discuss some of the potential uses of gene transfer for therapeutic purposes.  相似文献   

14.
PURPOSE: In general, the intestinal epithelium is quite refractory to viral and non-viral methods of gene transfer. In this report, various cyclodextrin formulations were tested for their ability to enhance adenoviral transduction efficiency in two models of the intestinal epithelium: differentiated Caco-2 cells and rat jejunum. METHODS: Transduction efficiency of replication-deficient adenovirus type 5 vectors encoded with either the E. coli beta-galactosidase or the jellyfish green fluorescent protein gene was assessed by X-gal staining or visualization of fluorescence 48 hours after infection. In vivo experiments were performed using an intestinal loop ligation technique. RESULTS: Several formulations of neutral and positively charged beta cyclodextrins significantly enhanced adenoviral-mediated gene transfer in the selected models. The cyclodextrin formulations studied increased adenoviral transduction in the intestine by enhancing both viral binding and internalization. Viral binding was significantly increased on cell membranes treated with positively charged cyclodextrins, as seen with confocal microscopy and rhodamine-labeled virus. Permeability studies and TEER readings revealed that the most successful formulations gently disrupt cell membranes. This enhances internalization of viral particles and results in increased levels of gene expression. CONCLUSIONS: These formulations can be of value in gene transfer to cells and tissues in which adenoviral infection is limited due to a lack of fiber and alpha(v) integrin receptors. They are simple to prepare and do not affect the ability of the virus to transduce target cells.  相似文献   

15.
Gene therapy to correct defective genes requires efficient gene delivery and long-term gene expression. The available vector systems have not allowed the simultaneous achievement of both goals. We have developed a chimeric viral vector system that incorporates favorable aspects of both adenoviral and retroviral vectors. Adenoviral vectors induce target cells to function as transient retroviral producer cells in vivo. The progeny retroviral vector particles are then able to stably transduce neighboring cells. In this system, the nonintegrative adenoviral vector is rendered functionally integrative via the intermediate generation of a retroviral producer cell. The chimeric vectors may allow realization of the requisite goals for specific gene-therapy applications.  相似文献   

16.
Adenoviral vectors are being developed for oral delivery of therapeutic genes to the intestine. Initial studies in the rat using mucolytics and direct application of adenovirus encoded with the interleukin-1 receptor antagonist gene to the jejunum produced limited gene expression. The goal of this study was to determine the role of integrins in adenovirus-mediated gene delivery to the intestinal epithelium. Integrins are involved in cellular differentiation and tight junction formation and mediate adenoviral internalization. Results from Caco-2 and IEC-18 cells suggest that, as enterocytes differentiate, cell-surface integrin expression decreases. Pretreatment of Caco-2 cells with RGD peptides reduced adenoviral transduction efficiency by 80% in undifferentiated cells and 20% in differentiated cells. Both differentiated and undifferentiated IEC-18 cells showed a 70% drop in transduction when pretreated with the peptide. Infection inhibition studies with monoclonal antibodies further suggest that alpha(v)beta3 and alpha6beta1 integrins play significant roles in adenoviral internalization in the intestine. Expression of integrins in cell culture models of the intestine correlated with in vivo expression in intestinal segments. These results indicate that the ileum is a prime target for efficient adenovirus-mediated gene transfer in the rat. To enhance transduction in differentiated enterocytes (probable targets for oral gene delivery), Caco-2 cells were treated with interleukin-1beta (a cytokine known to increase integrin expression) prior to administration of the virus. Transduction efficiency increased four-fold.  相似文献   

17.
Recombinant adenoassociated virus (rAAV) type 2 vectors have been used to transduce a wide variety of cell types, including hematopoietic progenitor cells. For in vivo gene transfer, it is desirable to have an rAAV vector that specifically transduces selected target cells. As a first step toward generating an rAAV vector capable of targeting delivery in vivo, we have engineered a chimeric protein combining the AAV capsid protein and the variable region of a single-chain antibody against human CD34 molecules, a cell surface marker for hematopoietic stem/progenitor cells. Inclusion of the chimeric CD34 single-chain antibody-AAV capsid proteins within an rAAV virion significantly increased the preferential infectivity of rAAV for the CD34+ human myoleukemia cell line KG-1, which is normally refractory to rAAV transduction. Antibodies against the single-chain antibody and the CD34 protein blocked this transduction. This chimeric vector represents a significant improvement in the host range of rAAV and the first step toward specific gene delivery by rAAV vectors to cells of choice, in this case, hematopoietic progenitor cells, for the treatment of human disease.  相似文献   

18.
Sepsis represents a growing concern in high-risk patients and there has been a lack of effective preventives and therapies. Bacterial/permeability increasing protein (BPI) is a human neutrophil granule-associated defense molecule specific for Gram-negative bacteria and their products. To develop a BPI-transgene-based prophylactic or therapeutic modality, we have developed a recombinant, replication-deficient adenoviral vector expressing full-length human BPI protein (AdhBPI). The expression of BPI is under control of a murine cytomegalovirus (CMV) promoter. Using in vitro and in vivo systems, AdhBPI-mediated gene transfer led to extracellular secretion of BPI protein, which effectively neutralized endotoxin (lipopolysaccharide [LPS]) and markedly reduced the production of proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and macrophage inflammatory protein 2 (MIP-2) by freshly isolated murine alveolar macrophages. By using a mouse model of nonlethal sepsis elicited with LPS, we demonstrated that in vivo gene transfer of BPI was able to markedly inhibit the effect of a large dose of LPS on cytokine responses when injected intraperitoneally. Furthermore, such in vivo BPI gene transfer also improved the survival of mice suffering from lethal septic shock elicited by intraperitoneal injection of d-galactosamine and LPS. Thus, our results suggest that human BPI gene transfer vector has the potential to be used as a therapeutic agent for septic conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号