首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large and dynamic computational Grids, generally known as wide-area Grids, are characterized by a large availability, heterogene- ity on computational resources, and high vari- ability on their status during the time. Such Grid infrastructures require appropriate schedule mechanisms in order to satisfy the application performance requirements (QoS). In this paper we propose a launch-time heuristics to schedule component-based parallel applications on such kind of Grid. The goal of the proposed heuristics is threefold: to meet the minimal task computation- al requirement, to maximize the throughput between communicating tasks, and to evaluate on-the-fly the resource availability to minimize the aging effect on the resources state. We evaluate the proposed heuristics by simulations applying it to a suite of task graphs and Grid platforms randomly generated. Moreover, a further test was conducted to schedule a real application on a real Grid. Experimental results shown that the proposed solution can be a viable one.  相似文献   

2.
This paper presents a resource selection system for exploiting graphics processing units (GPUs) as general-purpose computational resources in desktop Grid environments. Our system allows Grid users to share remote GPUs, which are traditionally dedicated to local users who directly see the display output. The key contribution of the paper is to develop this novel system for non-dedicated environments. We first show criteria for defining idle GPUs from the Grid users’ point of view. Based on these criteria, our system uses a screensaver approach with some sensors that detect idle resources at a low overhead. The idea for this lower overhead is to avoid GPU intervention during resource monitoring. Detected idle GPUs are then selected according to a matchmaking service, making the system adaptive to the rapid advance of GPU architecture. Though the system itself is not yet interoperable with current desktop Grid systems, our idea can be applied to screensaver-based systems such as BOINC. We evaluate the system using Windows PCs with three generations of nVIDIA GPUs. The experimental results show that our system achieves a low overhead of at most 267 ms, minimizing interference to local users while maximizing the performance delivered to Grid users. Some case studies are also performed in an office environment to demonstrate the effectiveness of the system in terms of the amount of detected idle time.  相似文献   

3.
Large-scale Grids that aggregate and share resources over wide-area networks present major challenges in understanding dynamic application and resource behavior for performance, stability, and reliability. Accurate study of the dynamic behavior of applications, middleware, resources, and networks depends on coordinated and accurate modeling of all four of these elements simultaneously. We have designed and implemented a tool called the MicroGrid which enables accurate and comprehensive study of the dynamic interaction of applications, middleware, resource, and networks. The MicroGrid creates a virtual Grid environment – accurately modeling networks, resources, the information services (resource and network metadata) transparently. Thus, the MicroGrid enables users, Grid researchers, or Grid operators to study arbitrary collections of resources and networks. The MicroGrid includes the MaSSF online network simulator which provides packet-level accurate, but scalable network modeling. We present experimental results with applications which validate the implementation of the MicroGrid, showing that it not only runs real Grid applications and middleware, but that it accurately models both their and underlying resource and network behavior. We also study a range of techniques for scaling a critical part of the online network simulator to the simulation of large networks. These techniques employ a sophisticated graph partitioner, and a range of edge and node weighting schemes exploiting a range of static network and dynamic application information. The best of these, profile-driven placement, scales well to online simulation of large networks of 6,000 nodes using 24 simulation engine nodes.  相似文献   

4.
QoS guided Min-Min heuristic for grid task scheduling   总被引:75,自引:1,他引:74       下载免费PDF全文
Task scheduling is an integrated component of computing.With the emergence of Grid and ubiquitous computing,new challenges appear in task scheduling based on properties such as security,quality of service,and lack of central control within distributed administrative domains.A Grid task scheduling framework must be able to deal with these issues.One of the goals of Grid task scheduling is to achivev high system throughput while matching applications with the available computing resources.This matching of resources in a non-deterministically shared heterogeneous environment leads to concerns over Quality of Service (QoS).In this paper a novel QoS guided task scheduling algorithm for Grid computing is introduced.The proposed novel algorithm is based on a general adaptive scheduling heuristics that includes QoS guidance.The algorithm is evaluated within a simulated Grid environment.The experimental results show that the nwe QoS guided Min-Min heuristic can lead to significant performance gain for a variety of applications.The approach is compared with others based on the quality of the prediction formulated by inaccurate information.  相似文献   

5.
The exploitation of service oriented technologies, such as Grid computing, is being boosted by the current service oriented economy trend, leading to a growing need of Quality of Service (QoS) mechanisms. However, Grid computing was created to provide vast amounts of computational power but in a best effort way. Providing QoS guarantees is therefore a very difficult and complex task due to the distributed and heterogeneous nature of their resources, specially the volunteer computing resources (e.g., desktop resources).The scope of this paper is to empower an integrated multi QoS support suitable for Grid Computing environments made of either dedicated and volunteer resources, even taking advantage of that fact. The QoS is provided through SLAs by exploiting different available scheduling mechanisms in a coordinated way, and applying appropriate resource usage optimization techniques. It is based on the differentiated use of reservations and scheduling in advance techniques, enhanced with the integration of rescheduling techniques that improve the allocation decisions already made, achieving a higher resource utilization and still ensuring the agreed QoS. As a result, our proposal enhances best-effort Grid environments by providing QoS aware scheduling capabilities.This proposal has been validated by means of a set of experiments performed in a real Grid testbed. Results show how the proposed framework effectively harnesses the specific capabilities of the underlying resources to provide every user with the desired QoS level, while, at the same time, optimizing the resources’ usage.  相似文献   

6.
The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of a computing system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 h). We have designed, analyzed, and compared the performance of a set of heuristic techniques to maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy constrained. We consider six utility-aware heuristics and four existing heuristics for comparison. A new concept of temporary place-holders is compared with scheduling using permanent reservations. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in multiple energy-constrained oversubscribed HPC environments. We conduct an experiment with a subset of the heuristics on a physical testbed system for one scheduling scenario. We demonstrate that our proposed utility-aware resource management heuristics are able to significantly outperform existing techniques.  相似文献   

7.
Large-scale distributed systems provide an attractive scalable infrastructure for network applications. However, the loosely coupled nature of this environment can make data access unpredictable, and in the limit, unavailable. We introduce the notion of accessibility to capture both availability and performance. An increasing number of data-intensive applications require not only considerations of node computation power but also accessibility for adequate job allocations. For instance, selecting a node with intolerably slow connections can offset any benefit to running on a fast node. In this paper, we present accessibility-aware resource selection techniques by which it is possible to choose nodes that will have efficient data access to remote data sources. We show that the local data access observations collected from a node's neighbors are sufficient to characterize accessibility for that node. By conducting trace-based, synthetic experiments on PlanetLab, we show that the resource selection heuristics guided by this principle significantly outperform conventional techniques such as latency-based or random allocations. The suggested techniques are also shown to be stable even under churn despite the loss of prior observations.  相似文献   

8.
Scheduling and resource allocation in large scale distributed environments, such as Computational Grids (CGs), arise new requirements and challenges not considered in traditional distributed computing environments. Among these new requirements, task abortion and security become needful criteria for Grid schedulers. The former arises due to the dynamics of the Grid systems, in which resources are expected to enter and leave the system in an unpredictable way. The latter requirement appears crucial in Grid systems mainly due to a multi-domain nature of CGs. The main aim of this paper is to develop a scheduling model that enables the aggregation of task abortion and security requirements as additional, together with makespan and flowtime, scheduling criteria into a cumulative objective function. We demonstrate the high effectiveness of genetic-based schedulers in finding near-optimal solutions for multi-objective scheduling problem, where all criteria (objectives) are simultaneously optimized. The proposed meta-heuristics are experimentally evaluated in static and dynamic Grid scenarios by using a Grid simulator. The obtained results show the fast reduction of the values of basic scheduler performance metrics, especially in the dynamic case, that confirms the usefulness of the proposed approach in real-life scenarios.  相似文献   

9.
Grid computing technology enables the creation of large‐scale IT infrastructures that are shared across organizational boundaries. In such shared infrastructures, conflicts between user requirements are common and originate from the selfish actions that users perform when formulating their service requests. The introduction of economic principles in grid resource management offers a promising way of dealing with these conflicts. We develop and analyze both a centralized and a decentralized algorithm for economic grid resource management in the context of compute bound applications with deadline‐based quality of service requirements and non‐migratable workloads. Through the use of reservations, we co‐allocate resources across multiple providers in order to ensure that applications finish within their deadline. An evaluation of both algorithms is presented and their performance in terms of realized user value is compared with an existing market‐based resource management algorithm. We establish that our algorithms, which operate under a more realistic workload model, can closely approximate the performance of this algorithm. We also quantify the effect of allowing local workload preemption and different scheduling heuristics on the realized user value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Translated or cross-lingual plagiarism is defined as the translation of someone else’s work or words without marking it as such or without giving credit to the original author. The existence of cross-lingual plagiarism is not new, but only in recent years, due to the rapid development of the natural language processing, appeared the first algorithms which tackled the difficult task of detecting it. Most of these algorithms utilize machine translation to compare texts written in different languages. We propose a different method, which can effectively detect translations between language-pairs where machine translations still produce low quality results. Our new algorithm presented in this paper is based on information retrieval (IR) and a dictionary based similarity metric. The preprocessing of the candidate documents for the IR is computationally intensive, but easily parallelizable. We propose a desktop Grid solution for this task. As the application is time sensitive and the desktop Grid peers are unreliable, a resubmission mechanism is used which assures that all jobs of a batch finish within a reasonable time period without dramatically increasing the load on the whole system.  相似文献   

11.
Advances in network technologies and the emergence of Grid computing have both increased the need and provided the infrastructure for computation and data intensive applications to run over collections of heterogeneous and autonomous nodes. In the context of database query processing, existing parallelisation techniques cannot operate well in Grid environments because the way they select machines and allocate tasks compromises partitioned parallelism. The main contribution of this paper is the proposal of a low-complexity, practical resource selection and scheduling algorithm that enables queries to employ partitioned parallelism, in order to achieve better performance in a Grid setting. The evaluation results show that the scheduler proposed outperforms current techniques without sacrificing the efficiency of resource utilisation. Recommended by: Ioannis Vlahavas  相似文献   

12.
The use of multiple cooperating robotic manipulators to assemble large aircraft structures entails the scheduling of many discrete tasks such as drilling holes and installing fasteners. Since the tasks have different tool requirements, it is desirable to minimize tool changes that incur significant time costs. We approach this problem as a multi-robot task allocation problem with precedence constraints, where the constraints are loosely enforced in terms of prioritizing the tasks to avoid unnecessary tool changes. To avoid the computational burden of searching over all possible task prioritization options, our main contribution is to develop a two-step, data-driven approach to automatically select suitable precedence relations. The first step is to adapt an iterative auction-based method to encode the precedence relations using scheduling heuristics. The second step is to develop a robust machine learning method to generate policies for automatically selecting efficient scheduling heuristics based on the problem characteristics. Experimental results show that the top performing heuristics yield schedules that are more efficient than those of a baseline partition-based scheduler by almost 17%–19%, depending on the robot failure profiles. The learned policies are also able to select heuristics that perform better than greedy selection without incurring additional computational costs.  相似文献   

13.
Several classes of scientific and commercial applications require the execution of a large number of independent tasks. One highly successful and low‐cost mechanism for acquiring the necessary computing power for these applications is the ‘public‐resource computing’, or ‘desktop Grid’ paradigm, which exploits the computational power of private computers. So far, this paradigm has not been applied to data mining applications for two main reasons. First, it is not straightforward to decompose a data mining algorithm into truly independent sub‐tasks. Second, the large volume of the involved data makes it difficult to handle the communication costs of a parallel paradigm. This paper introduces a general framework for distributed data mining applications called Mining@home. In particular, we focus on one of the main data mining problems: the extraction of closed frequent itemsets from transactional databases. We show that it is possible to decompose this problem into independent tasks, which however need to share a large volume of the data. We thus introduce a data‐intensive computing network, which adopts a P2P topology based on super peers with caching capabilities, aiming to support the dissemination of large amounts of information. Finally, we evaluate the execution of a pattern extraction task on such network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The scheduling of independent but file-sharing tasks on heterogeneous master-slave platforms has recently found important applications in Grid environments. The scheduling heuristics recently proposed for this problem are all constructive in nature and based on a common greedy criterion which depends on the momentary completion time values of the tasks. We show that this greedy decision criterion has shortcomings in exploiting the file-sharing interaction among tasks since completion time values are inadequate to extract the global view of this interaction. We propose a three-phase scheduling approach which involves initial task assignment, refinement, and execution ordering phases. For the refinement phase, we model the target application as a hypergraph and, with an elegant hypergraph-partitioning-like formulation, we propose using iterative-improvement-based heuristics for refining the task assignments according to two novel objective functions. Unlike the turnaround time, which is the actual schedule cost, the smoothness of proposed objective functions enables the use of iterative-improvement-based heuristics successfully since their effectiveness and efficiency depend on the smoothness of the objective function. Experimental results on a wide range of synthetically generated heterogeneous master-slave frameworks show that the proposed three-phase scheduling approach performs much better than the greedy constructive approach.  相似文献   

15.
We can distinguish two different Grid concepts: desktop and service Grids. Both Grid concepts have their advantages and disadvantages, however these are different. For example desktop Grids are a cost-effective platform, but sometimes unreliable. On the other hand service Grids are highly reliable, but need remarkable funding. The aim of Grid interoperability is to combine the advantages of the different Grid concepts, so the integrated infrastructure offers the best of both concepts. Within the paper we define the Grid interoperability problem, and approximate to the generic architecture through a formal model. We prove formally that the resulting architecture solves the Grid interoperability problem, and is generic enough to interconnect different Grid infrastructures with minor work. We also show in the paper that the formal concept can be applied for creating a gLite to BOINC bridge, and the performance of the core bridge implementation is satisfactory.  相似文献   

16.
Grid is a distributed high performance computing paradigm that offers various types of resources (like computing, storage, communication) to resource-intensive user tasks. These tasks are scheduled to allocate available Grid resources efficiently to achieve high system throughput and to satisfy user requirements. The task scheduling problem has become more complex with the ever increasing size of Grid systems. Even though selecting an efficient resource allocation strategy for a particular task helps in obtaining a desired level of service, researchers still face difficulties in choosing a suitable technique from a plethora of existing methods in literature. In this paper, we explore and discuss existing resource allocation mechanisms for resource allocation problems employed in Grid systems. The work comprehensively surveys Gird resource allocation mechanisms for different architectures (centralized, distributed, static or dynamic). The paper also compares these resource allocation mechanisms based on their common features such as time complexity, searching mechanism, allocation strategy, optimality, operational environment and objective function they adopt for solving computing- and data-intensive applications. The comprehensive analysis of cutting-edge research in the Grid domain presented in this work provides readers with an understanding of essential concepts of resource allocation mechanisms in Grid systems and helps them identify important and outstanding issues for further investigation. It also helps readers to choose the most appropriate mechanism for a given system/application.  相似文献   

17.
The abundant computing resources in current organizations provide new opportunities for executing parallel scientific applications and using resources. The Enterprise Desktop Grid Computing (EDGC) paradigm addresses the potential for harvesting the idle computing resources of an organization’s desktop PCs to support the execution of the company’s large-scale applications. In these environments, the accuracy of response-time predictions is essential for effective metascheduling that maximizes resource usage without harming the performance of the parallel and local applications. However, this accuracy is a major challenge due to the heterogeneity and non-dedicated nature of EDGC resources. In this paper, two new prediction techniques are presented based on the state of resources. A thorough analysis by linear regression demonstrated that the proposed techniques capture the real behavior of the parallel applications better than other common techniques in the literature. Moreover, it is possible to reduce deviations with a proper modeling of prediction errors, and thus, a Self-adjustable Correction method (SAC) for detecting and correcting the prediction deviations was proposed with the ability to adapt to the changes in load conditions. An extensive evaluation in a real environment was conducted to validate the SAC method. The results show that the use of SAC increases the accuracy of response-time predictions by 35%. The cost of predictions with self-correction and its accuracy in a real environment was analyzed using a combination of the proposed techniques. The results demonstrate that the cost of predictions is negligible and the combined use of the prediction techniques is preferable.  相似文献   

18.
Grid resource provisioning is a complex task that is often compromised due to non-availability of the desired resources. The heterogeneous and dynamic nature of the Grid resources depends on the Quality of Service (QoS) based resource provisioning for allocation of appropriate resources to Grid applications. Until resource provisioning is considered a fundamental capability, predictable QoS cannot be delivered to the Grid consumers. A resource provisioning policy based on QoS parameters is required for efficient Grid resource provisioning. In this paper a resource provisioning framework has been proposed. This framework offers resource provisioning policy that caters to provisioned resource allocation and resource scheduling. The policy rules have been specified in XML schema. The policy has been validated by Z Formal specification language and implementation has been demonstrated through a case study. The experimental results demonstrate that QoS based provisioned approach is effective in minimizing cost and submission burst time of applications in comparison to the existing approaches.  相似文献   

19.
Grid computing, in which a network of computers is integrated to create a very fast virtual computer, is becoming ever more prevalent. Examples include the TeraGrid and Planet-lab.org, as well as applications on the existing Internet that take advantage of unused computing and storage capacity of idle desktop machines, such as Kazaa, SETI@home, Climateprediction.net, and Einstein@home. Grid computing permits a network of computers to act as a very fast virtual computer. With many alternative computers available, each with varying extra capacity, and each of which may connect or disconnect from the grid at any time, it may make sense to send the same task to more than one computer. The application can then use the output of whichever computer finishes the task first. Thus, the important issue of the dynamic assignment of tasks to individual computers is complicated in grid computing by the option of assigning multiple copies of the same task to different computers. We show that under fairly mild and often reasonable conditions, maximizing task replication stochastically maximizes the number of task completions by any time. That is, it is better to do the same task on as many computers as possible, rather than assigning different tasks to individual computers. We show maximal task replication is optimal when tasks have identical size and processing times have a NWU (New Worse than Used; defined later) distribution. Computers may be heterogeneous and their speeds may vary randomly, as is the case in grid computing environments. We also show that maximal task replication, along with a c μ rule, stochastically maximizes the successful task completion process when task processing times are exponential and depend on both the task and computer, and tasks have different probabilities of completing successfully.  相似文献   

20.
The increasing demand on execution of large-scale Cloud workflow applications which need a robust and elastic computing infrastructure usually lead to the use of high-performance Grid computing clusters. As the owners of Cloud applications expect to fulfill the requested Quality of Services (QoS) by the Grid environment, an adaptive scheduling mechanism is needed which enables to distribute a large number of related tasks with different computational and communication demands on multi-cluster Grid computing environments. Addressing the problem of scheduling large-scale Cloud workflow applications onto multi-cluster Grid environment regarding the QoS constraints declared by application’s owner is the main contribution of this paper. Heterogeneity of resource types (service type) is one of the most important issues which significantly affect workflow scheduling in Grid environment. On the other hand, a Cloud application workflow is usually consisting of different tasks with the need for different resource types to complete which we call it heterogeneity in workflow. The main idea which forms the soul of all the algorithms and techniques introduced in this paper is to match the heterogeneity in Cloud application’s workflow to the heterogeneity in Grid clusters. To obtain this objective a new bi-level advanced reservation strategy is introduced, which is based upon the idea of first performing global scheduling and then conducting local scheduling. Global-scheduling is responsible to dynamically partition the received DAG into multiple sub-workflows that is realized by two collaborating algorithms: (1) The Critical Path Extraction algorithm (CPE) which proposes a new dynamic task overall critically value strategy based on DAG’s specification and requested resource type QoS status to determine the criticality of each task; and (2) The DAG Partitioning algorithm (DAGP) which introduces a novel dynamic score-based approach to extract sub-workflows based on critical paths by using a new Fuzzy Qualitative Value Calculation System to evaluate the environment. Local-scheduling is responsible for scheduling tasks on suitable resources by utilizing a new Multi-Criteria Advance Reservation algorithm (MCAR) which simultaneously meets high reliability and QoS expectations for scheduling distributed Cloud-base applications. We used the simulation to evaluate the performance of the proposed mechanism in comparison with four well-known approaches. The results show that the proposed algorithm outperforms other approaches in different QoS related terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号