首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the present work, aluminum alloy 6061/10%SiC composite is machined using numerical controlled Z-axis (ZNC) electrical discharge machining (EDM) process. Improvement in material removal rate (MRR) is explored using tungsten powder suspended dielectric fluid in EDM process (powder-mixed electrical discharge machining (PMEDM)). Peak current, pulse on time, pulse off time, and gap voltage are studied as process parameters. Mathematical relation between process parameters and MRR is established on basis of response surface methodology. The results obtained are further compared with MRR achieved from machining using simple EDM. The existence of tungsten particles in kerosene resulted in 48.43% improvement in MRR. The influence of tungsten powder-mixed dielectric fluid on machined surface is analyzed using scanning electron microscope and energy dispersive spectroscopy (EDS). The results revealed improvement in surface finish and reduction in recast layer thickness with PMEDM. EDS analysis reported presence of tungsten and carbon in recast layer deposited on machined surface.  相似文献   

2.
The objective of this research is to investigate the feasibility of using Electrical-Discharge Machining (EDM) for carbon-carbon composite materials as well as the effects of major machining parameters. The material was machined by electrical-discharge sinker using copper electrode. The mechanism of material removal has been revealed by the morphology of debris. The material removal rate, the surface topography and the recast layer that remains on the workpiece surface were studied in terms of EDM processing variables (e.g., pulse current and pulse duration time). The machined surface showing resolidification was examined by Scanning Electron Microscopy (SEM). A qualitative energy dispersive spectroscopic analyzer was used to measure the amount of migrated alloy in the workpiece and the chemical composition of recast layer. The machining damage, the recast layer, and the mass transfer was proportional to the power input. The EDM process is a feasible method for machining of carbon-carbon composites.  相似文献   

3.
The most common dielectric in sinking electrical discharge machining (EDM) is kerosene. However, kerosene is inflammable; besides, it can be decomposed and release harmful gases during machining process. And, owing to its low viscosity, using kerosene in sinking EDM has low machining efficiency. Accordingly, conventional sinking EDM using kerosene as dielectric has poor safety, unfriendly environment impact, and low machining efficiency. A new water-in-oil (W/O) nanoemulsion is presented in this paper. This W/O nanoemulsion not only can eliminate the hazards from kerosene to operator and environment but also improve the machining performance of conventional sinking EDM. This research aims to experimentally investigate the machining performance of W/O nanoemulsion in comparison with kerosene in sinking EDM at relatively low discharge energy. The effects of electrode material, electrode polarity, peak current, and pulse duration on machining performance are studied. The machined surface and recast layer of workpiece are characterized as well. The experimental results demonstrate that compared with kerosene, using W/O nanoemulsion in sinking EDM can obtain a higher material removal rate (MRR), a lower relative electrode wear rate (REWR), and a machined workpiece with fewer defects and thinner recast layer.  相似文献   

4.
This work investigated electrical discharge machining (EDM) of carbon fiber reinforced carbon composite material. The characteristics of composites machined by EDM were studied in terms of machining parameters. An empirical model of the composites was also proposed based on the experimental data. The composite material was produced by an electrical discharge sinker using a graphite electrode. The workpiece surface and resolidified layers were examined by scanning electron microscopy (SEM). Moreover, surface roughness was determined with a surface profilometer. Experimental results indicate that the extent of delamination, thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process effectively produces excellent surface characteristics and high quality holes in composites under low discharge energy conditions.  相似文献   

5.
In this investigation, cemented tungsten carbides graded K10 and P10 were machined by electrical discharge machining (EDM) using an electrolytic copper electrode. The machining parameters of EDM were varied to explore the effects of electrical discharge energy on the machining characteristics, such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness. Moreover, the effects of the electrical discharge energy on heat-affected layers, surface cracks and machining debris were also determined. The experimental results show that the MRR increased with the density of the electrical discharge energy; the EWR and diameter of the machining debris were also related to the density of the electrical discharge energy. When the amount of electrical discharge energy was set to a high level, serious surface cracks on the machined surface of the cemented tungsten carbides caused by EDM were evident.  相似文献   

6.
bdElectrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time. XRD analysis of machined surface of sintered FeAl showed the formation of Fe3C phase during the EDM process. The debris analysis was used to identify the material removal mechanism occurring during the EDM of sintered FeAl.  相似文献   

7.
Near-dry electric discharge machining (EDM) is an eco-friendly process. It does not produce toxic fumes and consequent health hazards. The near-dry EDM generally utilizes a mixture of two phase (liquid and air) dielectric for machining. This investigation reports the influence of four processing parameters, viz. current, flushing pressure, duty factor, and lift on three responses. The responses measured were material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The work material chosen was high speed steel (HSS). Mathematical models have been proposed herein for evaluation of the effect of processing parameters in near-dry EDM. These models were developed using response surface methodology (RSM). The experimental results reveal that the process parameters taken into consideration were significant for MRR. The TWR was negligible in near-dry EDM. This process gives a finer surface finish with thinner recast layer even at higher discharge energies as compared to conventional EDM.  相似文献   

8.
Surface integrity in electric discharge machining (EDM) has always been a major concern in the manufacturing industry. Although, EDM with a powder suspended dielectric has shown good potential in enhancing the material removal rate and improving surface finish, influence of the same on the overall surface integrity is not very clear. The current work utilized the graphite powder and evaluated its role in combination with concentration and machining parameters, on surface roughness (Ra), surface crack density (SCD), white layer thickness, microhardness depth profile, possible phase changes, and residual stress during powder-mixed EDM (PMEDM) of Inconel 625 (a nickel-based super alloy), that is now-a-days regularly used in aerospace, chemical and marine industries. The results showed that significant reduction in surface roughness, crack density, and white layer thickness is possible with the PMEDM process. It also promoted formation of carbides and other alloy compounds which is responsible for augmentation of hardness in surface and subsurface region. The added particles also caused a decline in tensile residual stress of the machined samples.  相似文献   

9.
A functionally Graded 15-35 volume% silicon carbide particulate (SiCp) reinforced Al359 metal matrix composite (SiCp/Al MMC) was drilled by electrical discharge machining (EDM) to assess the machinability and workpiece quality. The machining conditions were identified for both the machining performance and workpiece quality of the EDM process, including some aspects of material removal mechanisms, material removal rate (MRR), electrode tool wear, and subsequent drilled hole quality including surface texture and roundness by using surface profilometry, coordinate measuring machine (CMM), and scanning electron microscopy (SEM). It was observed that the material removal rate increases with increasing peak current and pulse-on-time up to the optimal points and drops drastically thereafter. Higher peak current and/or pulse-on-time result in both the greater tool wear and the larger average diameter error. As the percentage of the SiC particles increases, MRR was increased and electrode wear was found to be decreased. At the EDM machined subsurface layer, the fragmented and melted SiC particles were observed under the SEM and EDX-ray examination.  相似文献   

10.
Machining of ceramic materials has been a major challenge owing to high hardness and brittleness. The reinforcement of a conducting filler allows permissible machining in electrical discharge machining (EDM) process. The current effort analyses the impact of multi-walled carbon nanotubes (MWCNT) of concentrations of 2.5 and 5 vol. %, as conducting filler towards machinability of alumina composites in µ-EDM process. The influence of tool materials and its rotation are closely analyzed. A successful machining process is observed in both the two composites, with a higher material removal rate (MRR) in 5 vol. % MWCNTs. When the tool starts to rotate at 750 rpm, an increment of around 60–65% is observed in MRR for both the two composites. Similarly, the surface roughness (Ra) decreases by a factor of 20?25%. The brass tool is observed to yield better machining capabilities due to the frequent initiation of sparks. A highly porous machined surface is observed in both the two composites. This scenario depicts the spalling effect as more dominant than melting-evaporation effect. The extent of porous recast layer on the drilled edges is found to reduce with increasing the speed of tool rotation.  相似文献   

11.
Spline actuators made of investment cast 17-4 PH (precipitation hardening) stainless steel were found to contain micro-cracks. The cracked actuators were subjected to optical and scanning electron microscopy and hardness testing, which revealed that the failure occurred due to fatigue crack initiation and growth after electrical discharge machining (EDM). The rehardened layer produced by the EDM remained after machining, and the cracks and surface irregularities associated with this layer provided sites for crack initiation and growth, which ultimately caused rejection of parts. Close dimensional tolerances on actuators require post-heat treatment EDM. Thickness of the recast layer was measured to be about 38–55 μm, and precipitation in vicinity of the machined surface is a potential source for corrosion. Post-machining polishing by means of fluidized bed granules was employed to remove recast layer and associated precipitates. Test results proved that removal of surface layers improved the microstructure and the resistance to crack formation. The post-EDM polishing and subsequent annual inspections proved that problem was solved.  相似文献   

12.
This study presents detailed experimental investigations on precision machining of the TiAl-based alloy with an abrasive belt flexible grinding method. Subsequently, the feasibility of this precision machining method is evaluated with respect to the material removal rate, abrasive wear, machined surface roughness, and residual stress. The material removal rate and surface roughness were determined as experimental indicators and were measured via a three-coordinate measuring instrument and surface profiler, respectively. Micro-morphologies of the machined surface and worn abrasive belt were investigated via a scanning electron microscope. The residual stress distributions in the machined surface layer were detected by using an X-ray diffractometer. The experimental results revealed that the aforementioned evaluation indicators satisfied the desired requirements, thereby indicating that the abrasive belt flexible grinding technique was suitable for precision machining of the TiAl-based alloy. Additionally, the optimal combinations of grinding parameters were determined to obtain desirable material removal rate and machined surface roughness. The basic wear processes and characteristics of the abrasive belt were thoroughly examined. The formation of desirable residual compressive stresses in the machined surface layer was mainly attributed to low frequency and small amplitude vibration knocking at the grinding interface.  相似文献   

13.
Inconel 706 is a newly developed superalloy, which offers high mechanical strength alongwith easy fabricability thus making it suitable for turbine disk applications. Although Inconel 706 exhibits a substantial increase in stress rupture and tensile yield strength compared to other superalloys, its conventional machining yields poor surface finish and low dimensional accuracy of the machined components. Hence, wire electrical discharge machining (WEDM) of Inconel 706 has been performed and various performance attributes such as material removal rate (MRR), surface roughness (SR), recast surface, topography, microhardness, microstructural and metallurgical changes of the machined components have been evaluated. The experimental results revealed that servo voltage, pulse on time, and pulse off time greatly influence the MRR and SR. Due to high toughness of Inconel 706, no micro cracks were observed on the machined surface. Micro voids and micro globules are significantly reduced at low pulse on time and high servo voltage. But, there is a propensity of thick recast layer formation at high pulse on time and low servo voltage. EDAX analysis of recast surface exposed the existence of Cu and Zn which have migrated from the brass wire. The subsurface microhardness was changed to 80 μm due to significant thermal degradation.  相似文献   

14.
Electric discharge machining (EDM) is an acclaimed non-conventional machining process that is used for machining of hard or geometrically complex and electrically conductive materials which are extremely difficult to machine by conventional methods. One of the foremost demerits of this process is its very low material removal rate (MRR). For this, researchers have proposed some modifications like; providing rotational motion to the tool or workpiece, mixing of conducting fine powders (such as SiC, Cr, Al, graphite etc.) in the dielectric, providing vibrations to either the tool or the workpiece etc.

The present research examines how the MRR and tool wear rates (TWR) vary with the variation in the tool rotation speed and their effects on the surface integrity of the workpiece. The results obtained clearly indicate that the tool rotation significantly improves the average MRR up to 49%. Moreover, the average surface finish also gets improved by around 9–10% while using the rotational tool EDM. Due to the tool rotation, the recast layer thickness is less for the rotary EDM as compared with the stationary tool EDM process. Furthermore, the micro-cracking on the recast surface of the workpiece is also less for the rotary tool EDM as compared with the stationary tool EDM.  相似文献   


15.
In this paper, experiments are conducted by machining from different crystallographic orientations of monocrystalline silicon, and the effects of crystallographic orientation on the micro electrical discharge machining (EDM) process are discussed. The results demonstrate that the machining speed and surface roughness are varied when crystallographic orientation changes. The surface roughness is seen to vary by as much as twofold with crystallographic orientation, while the ratio between the maximum and minimum values of material removal rate is 1.76. The unique material removal mechanism of micro EDM enhances the effects of crystal anisotropy on micro electrical discharge machining process.  相似文献   

16.
In this research, an attempt was made to investigate the influence of copper tool vibration with ultrasonic frequency on output parameters in the electrical discharge machining of Ti–6Al–4V. The selected input parameters for the experiment comprise of ultrasonic vibrations of tool, current and pulse duration and the outputs are tool wear ratio (TWR), material removal rate (MRR), and stability of machining process and surface integrity of a workpiece, including surface roughness, thickness of recast layer, and formation of micro cracks. Scanning electron microscope and X-Ray diffraction were employed to examine the surface integrity of the workpiece. The results revealed that tool vibration with ultrasonic frequency enhances MRR via increasing normal discharges and decreasing arc discharges and open circuit pulses. Also, by using ultrasonic vibrations in finishing regimes, the density of cracks and TWR decrease while in roughing regimes, the thickness of recast layer, density of cracks, and TWR increase.  相似文献   

17.
In this study, a newly developed method of electric discharge machining has been proposed, which uses magnetorheological (MR) fluid instead of conventional oil like kerosene. The paper aims to reveal the process parameters that affect the material removal rate (MRR) during newly developed EDM process. This hybrid machining process showed dual advantage of high-quality machined surface with improved cutting efficiency. The viscoelastic nature of MR fluid is found to give polishing effect as well as high material removal resulting in more stable processing and improved EDM performance. The experimentation has been performed to determine effect of duty cycle, discharge current, pulse on time, percentage concentration of alumina particles surface roughness, and MRR. It has been found that MRR and surface finish improved significantly. The experimental results demonstrated that the EDM process combined with MR fluid resulted in an increase in MRR and surface finish significantly under a certain limit of carbonyl iron percentage (CIPs) in MR fluid.  相似文献   

18.
Electroconductive transformation toughened ZrO2 and NbC ceramic composite was machined with an electro-discharge machining (EDM) method. Effects of EDM conditions on roughness of machined surfaces were examined. Surface damage caused during machining was evaluated with flexural strength of machined specimens. Fracture surfaces of EDMed bending specimens were observed by scanning electron microscopy (SEM).

It was observed that the strength of EDMed members was decreased with increases in pulse current, pulse duration and duty factor. Pulse duration and pulse current had a great influence on the roughness of machined surfaces. When the pulse duration was large enough, noticeable delaraination in the surface layer occurred. The highest flexural strength of an EDMed specimen attained was about 1 GPa. The X-ray diffraction patterns of surface layers were changed by machining.  相似文献   

19.
This study investigates the manufacturing process of 2205 duplex stainless steel by wire electrical discharge machining where the effects of pulse-on time (PONT), wire tension and pulse-off time (POFT) on surface finish, kerf width, and material removal rate (MRR). It was found that the kerf width was unchanged with the change of PONT at long pulse-of time and higher wire tension. However, it decreased initially and then increased due to the rise of PONT at low values of wire tension and POFT. Low wire tension and PONT, POFT and contributed towards widest kerf. Longer PONT increased MRR due to higher machining/processing speed. Lower wire tension and shorter POFT increased MRR more than that of higher wire tension and POFT. Craters and recast layer were on the machined surfaces at all machining conditions. Increased PONT raised surface roughness at the lower POFT and tension in the wire. The surface finish at high wire tension and longer PONT is always better than that at smaller PONT and lower tension in the wire. The microstructure underneath the recast layer remains unchanged and the failure of wire electrode occurred at higher wire tension, longer PONT and shorter POFT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号