首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precision castings of the Ti-6Al-4V alloy containing pore defects were hot isostatically pressed (HIP) in an attempt to improve the high cycle fatigue strength. Although all defects were healed, the fatigue strength was still low when compared to -processed wrought material with a similar microstructure. Fatigue-crack initiation analysis, which included precision sectioning, indicated that early fatigue-crack initiation sites were related to relatively large -platelet colonies and massive grain-boundary (GB) phase. Shear across the large colonies or along the GB interfaces provided large initial cracks which resulted in the fatigue-life degradation. Large colonies and massive GB developed in the HIP healed zones of the casting pores. In spite of the total HIP pore closure, the fatigue-strength improvement was small when compared to wrought material due to the coarse microstructure that developed in some locations during the HIP cycle. Large planar-shear initiation facets across several colonies were also observed. The multicolony faceted shear is the result of the Burgers relation between the colony orientations and increases the chance of early fatigue-crack inititation.  相似文献   

2.
3.
Low-cycle-fatigue texts in vacuum and air were performed. Under cyclic loading the Ti-6Al-4V showed both cyclic hardening and cyclic softening depending on heat treatment, stress amplitude, and microstructure. Plastic deformation of the β-phase in the unaged condition due to stress induced martensitic transformation caused cyclic hardening. Cyclic softening was observed if the α-phase hardened by coherent Ti3Al particles was plastically deformed. Equiaxed microstructures exhibited a stronger cyclic softening than lamellar structures. This behavior could be explained by the pronounced texture of the equiaxed microstructures, whereas the lamellar structures were texture-free. The fatigue life was influenced by the cyclic softening process mainly in the low-cycle-fatigue regime. The fatigue life at normalized stress amplitude (σay) was shorter for microstructures with strong cyclic softening as compared to microstructures with lower cyclic softening.  相似文献   

4.
Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy   总被引:1,自引:0,他引:1  
ABSTRACT Fatigue crack initiation was studied in a bimodal TA6V titanium alloy. A ghost structure inherited from the forging process, the scale of which is roughly 100 times the apparent grain size, was found to govern the initiation process. In these macrograins, that we have labelled macrozones, most of the primary alpha grains (αp) are found to display the same crystallographic orientation. Fatigue cracks are initiated on the basal plane or, if basal slip is difficult, on the prismatic plane. Thus in macrozones, where basal or prismatic slip is easy, numerous neighbouring tiny cracks appear over the whole macrozone, which have the size of the primary αp grains. In these macrozones the contribution of crack coalescence to crack growth is consequently very significant. On the contrary, if basal and prismatic slips are both difficult in the macrozone, no crack can be found in the corresponding macrozone. The crack initiation process is thus highly heterogeneous at the scale of the macrozone. Furthermore, this microstructure is found to induce a large scatter in the fatigue life of notched samples.  相似文献   

5.
《Composites》1993,24(3):229-234
Fatigue crack growth from a through-thickness cut notch has been studied at ambient temperature in a Ti-6Al-4V alloy matrix reinforced with Sigma (SiC) fibres. All tests have been carried out in three-point bending, and localized dominant cracks have been produced in all cases. In these composites such dominant cracks often grow off-axis, and marked effects of stress ratio on crack growth rates have been measured. At low stress ratio, the composites exhibit outstanding crack growth resistance. It has been possible to observe fatigue striations within the matrix alloy and these observations allow local crack growth rates (and hence local effective stress intensity ranges) to be determined. The implications of such studies for defect tolerance and usable stress ranges for these composites have been considered.  相似文献   

6.
Fatigue crack growth after single-cycle peak overload was investigated in Ti-6Al-4V sheet. Strain hardening was determined not to be the major controlling mechanism retarding crack growth after peak over-load, but instead, strain hardening slightly accelerated crack growth for the case when strain hardening was induced prior to crack initiation. Crack growth after peak overload was characterized by: (1) no effect after 20 per cent overload: (2) crack arrest immediately following 70 and 100 per cent overloads; (3) subsequent retarded crack growth rates after 70 and 100 per cent overloads; and (4) retardation but no arrest following 50 per cent overload. The Wheeler model of crack growth retardation was investigated. The physical appearance of post-test fracture surfaces were as hypothesized by the Elber concept of crack closure after overload. The The recovery of an overloaded crack was linear with respect to the constant load amplitude cyclic stress intensity.  相似文献   

7.
8.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

9.
The effect of mean stress and frequency on the high cycle fatigue behavior of Ti-6Al-4V has been investigated. It has been shown that a transition in the fatigue behavior occurs at a stress ratio of approximately 0.7. Above this value, the material exhibits measurable strain accumulation and necking. Since Ti-6Al-4V is susceptible to room temperature creep, an empirical model was developed using static creep data in an attempt to predict the cyclic behavior of the material. The model was unable to account for the large amounts of strain seen experimentally. In addition, closer examination of the data revealed that the deformation was more closely related to the number of cycles than to time.  相似文献   

10.
The morphology and kinetics of the precipitation of the alpha phase produced by two different heat treatment routes, namely, (a) direct isothermal decomposition and (b)-quenching and subsequent ageing, were studied. In isothermally decomposed samples the (supersaturated) + transformation was seen to occur mainly through the discontinuous growth of the transformed zone consisting of groups of parallel side plates from the grain boundary regions towards the interior of the grain. Unlike for the case of a regular discontinuous precipitation, here the transformed regions are not separated from the untransformed by an incoherent interface and the growing-plates do obey a fixed orientation relationship with the grain from which they are evolved. The theory of cellular reaction has been applied to explain the growth rate of the duplex ( + ) region. The overall reaction kinetics were analysed on the basis of the Johnson-Mehl formulation and were found to be consistent with that of a discontinuous precipitation reaction, where grain boundary nucleation sites were saturated at an early stage of the transformation. The structure of the-quenched samples showed a uniform distribution of athermal omega particles which acted as precursors to the-precipitates. As a consequence, the reaction rate was greatly enhanced and-precipitation in the quenched and aged samples was seen to occur continuously in the entire body of the grain.  相似文献   

11.
Gas-pressure bulge forming of unreinforced Ti-6Al-4V and TiC-reinforced Ti-6Al-4V was performed while cycling the temperature around the allotropic transformation range of the alloy (880–1020 °C). The resulting domes exhibited very large strains to fracture without cavitation, demonstrating for the first time the use of transformation-mismatch superplasticity under a biaxial state of stress for both an alloy and a composite. Furthermore, much faster deformation rates were observed upon thermal cycling than for control experiments performed under the same gas pressure at a constant temperature of 1000°C, indicating that efficient superplastic forming of complex shapes can be achieved by transformation-mismatch superplasticity, especially for composites which are difficult to shape with other techniques. However, the deformation rate of the cycled composite was lower than for the alloy, most probably because the composite exhibits lower primary and secondary isothermal creep rates. For both cycled materials, the spatial distribution of principal strains is similar to that observed in domes deformed by isothermal microstructural superplasticity and the forming times can be predicted with existing models for materials with uniaxial strain rate sensitivity of unity. Thus, biaxial transformation-mismatch superplasticity can be modeled within the well-known frame of biaxial microstructural superplasticity, which allows accurate predictions of forming time and strain spatial distribution once the uniaxial constitutive equation of the material is known.  相似文献   

12.
Fatigue crack growth tests in mixed-mode II + III were performed on maraging steel and Ti-6Al-4V. The 3D evolutions of the crack fronts -measured by SEM after interrupted tests- were analyzed, taking into account the reduction in effective crack driving force by the interlocking and friction of the asperities of the crack surface. Under small-scale yielding conditions, the mixed-mode crack growth rates were found to correlate best with \({\sqrt{{\Delta {\rm K}}_{\rm II}^{{\rm eff}^{2}}+1.2\Delta {\rm K}_{\rm III}^{{\rm eff}^{2}}}}\) in maraging steel, while for Ti-6Al-4V, \({\sqrt{\Delta {\rm K}_{\rm II}^{{\rm eff}^{2}}+0.9\Delta {\rm K}_{\rm III}^{{\rm eff}^{2}}}}\) appeared suitable. For extended plasticity, a crack growth prediction method is proposed and validated for Ti-6Al-4V. This method is based on elastic-plastic F.E. computations and application, ahead of each node of the crack front, of a shear-dominated fatigue criterion.  相似文献   

13.
Ti-6Al-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6Ak-4V alloy has beeninvestigated by the uniaxial hot isothermal compression tests and a series of dilatometric experiments were also carried out todetermine the transformation temperatures at different cooling rates. Specimens for hot compression tests were homogenizedat 1050℃ for 10 min and then quickly cooled to different straining temperatures from 1050 to 850℃. Cooling rates were chosenfast enough to prevent high temperature transformation during cooling. Compression tests were conducted at temperaturesfrom 1050 to 850℃ in steps of 50℃ at constant true strain rates of 10~(-3) or 10~(-2) s~(-1). The apparent activation energy forcompression in two-phase region was calculated 420 kJ·mol~(-1). Partial globularization of cr phase was observed in the specimendeformed at low strain rates and at temperatures near the transformation zone and annealed after deformation.  相似文献   

14.
Porous titanium and its alloys have been considered as promising replacement for dense implants, as they possess low elastic modulus comparable to that of compact human bones and are capable of providing space for in-growth of bony tissues to achieve a better fixation. Recently, the additive manufacturing (AM) method has been successfully applied to the fabrication of Ti-6Al-4V cellular meshes and foams. Comparing to traditional fabrication methods, the AM method offers advantages of accurate control of complex cell shapes and internal pore architectures, thus attracting extensive attention. Considering the long-term safety in the human body, the metallic cellular structures should possess high fatigue strength. In this paper, the recent progress on the fatigue properties of Ti-6Al-4V cellular structures fabricated by the AM technique is reviewed. The various design factors including cell shapes, surface properties, post treatments and graded porosity distribution affecting the fatigue properties of additive manufactured Ti-6Al-4V cellular structures were introduced and future development trends were also discussed.  相似文献   

15.
This study investigated the method of estimating the fatigue strength of small notched Ti-6Al-4V specimen using the theory of critical distance that employs the stress distribution in the vicinity of the notch root. Circumferential-notched round-bar fatigue tests were conducted to quantify the effects of notch radius and notch depth on fatigue strength. The fatigue tests show that the larger notch radius increases the fatigue strength and the greater notch depth decreases the fatigue strength. The theory of critical distance assumes that fatigue damage can be correctly estimated only if the entire stress field damaging the fatigue fracture process zone is taken into account. Critical distance stress is defined as the average stress within the critical distance from notch root. The region from the notch root to the critical distance corresponds to the fatigue fracture process zone for crack initiation. It has been found that a good correlation exists between the critical distance stress and crack initiation life of small notched specimens if the critical distance is calibrated by the two notched fatigue failure curves of different notch root radii. The calibrated critical distances did not vary clearly over a wide range of fatigue failure cycles from medium-cycle low-cycle fatigue regime to high-cycle fatigue regime and have an almost constant value. This critical distance corresponds to the size of crystallographic facet at the fatigue crack initiation site for the wide range of fatigue cycles.  相似文献   

16.
There is a need for methodology(ies) to analyze the crack growth behavior under fretting fatigue condition since its experimental determination is a challenging task. A finite element sub-modeling method was used to estimate the crack propagation life in titanium alloy, Ti-6Al-4V specimens. Two contact geometries, cylinder-on-flat and flat-on-flat, were analyzed. The computed crack propagation lives were combined with the results of an experimental study where total fatigue lives were measured. The combined numerical-experimental approach provided the crack initiation lives. The crack propagation life increased with increasing applied cyclic bulk stress in similar manner for both contact geometries. Almost 90% of the fretting fatigue life was spent during the crack nucleation and initiation phases in the high cycle fatigue regime. A parametric study was also conducted to investigate the effects of contact load, coefficient of friction and tangential force on the crack growth behavior. The crack propagation life decreased with increase of these three parameters. This decrease was similar for the contact load and the tangential force in both contact geometries, however, the decrease in the case of coefficient of friction was relatively more in the cylindrical pad than in the flat pad.  相似文献   

17.
The fatigue crack growth (FCG) behaviour of SiC and B4C/B reinforced Ti-6 Al-4 V metal matrix composites loaded in the transverse direction as a function of modifications of the interface between the fibre and matrix was studied. The interface chemistry, modified by sulphur diffusion during thermal cycling treatment, changed the FCG in air, dry nitrogen and hydrogen environments when compared with the as-received specimens. The FCG rates tend to be higher in a humid environment. The SEM fractrography indicates that the FCG in humid air was by an increased amount of fibre splitting. The FCG in dry nitrogen environment was more often by interface debonding with some fibre splitting and fiber fracture. The FCG rates in dry hydrogen for both as-received and heat-treated specimens were intermediate between the observed rates for dry nitrogen and humid air. During FCG in laboratory air, the sulphur-enriched interface of the specimens thermal cycled in a sulphur environment reacts with the humidity in air to degrade the interface cohesion, resulting in complete separation of the interface from the matrix and the fibre at low strains. This inability of the interface to sustain any strain further increases the FCG rates in the matrix. The results show that the interface does transfer load during fatigue cycling either in an inert environment or if the interface has a minimal amount of impurities.  相似文献   

18.
Abstract

The fatigue crack growth resistance of α–β titanium alloys can be altered by microstructural modification. During welding, the fusion zone microstructure depends on cooling rate. In the present work, the alloy Ti-6Al-4V was welded over a range of heat inputs, using electron beam and gas tungsten arc welding. The weld microstructure varied from predominantly martensitic under rapid cooling conditions to a mixture of martensite and diffusional products on slower cooling. Post-weld heat treatment resulted in a basketweave α–β aggregate that coarsened with temperature and time. In all welded and heat treated conditions, the fusion zone exhibited a fatigue crack growth resistance superior to that of the base material, which was in part attributed to the lamellar microstructure of the fusion zone. Welding residual stresses also played a beneficial role in the as welded condition. Post-weld heat treatment eliminated the advantage resulting from the welding stresses but not that as a result of microstructure.  相似文献   

19.
Stress and strain anisotropy of a strongly textured Ti-6 Al-4 V alloy bar during superplastic deformation at 880 and 928° C has been investigated. After 0.9 superplastic strain at 928° C the deformation tended to become isotropic. The anisotropic superplastic deformation was found to be dependent upon the aligned microstructure and not influenced by the original -phase crystallographic texture. The room-temperature anisotropy before and after superplastic plastic deformation was controlled by the original -phase texture, which was still present even after 1.48 strain (344% elongation) at 928° C.  相似文献   

20.
This paper presents the results of an investiga-tion of the effect of hydrogen treatment onmicrostructures and tensile and low cycle fatigueproperties of a Ti-6Al-4V cast alloy.The phasetransformation and the refining mechanism of thecast microstructure during the process of hydrogentreatment were studied.It was found that afterhydrogen treatment,the coarse Widmanstttenstructure of the as-cast Ti alloy was transformedinto a very fine and equiaxed α+β microstructurewithout any GBα phase.The tensile strength andductility and the low cycle fatigue life of thehydrogen treated specimens were significantly im-proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号