首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了近期扫描近场光学显微镜(SNOM)在单分子探测、细胞精细结构和微生物学等研究领域中的应用进展,介绍了“量子荧光探针”、“生物纳米光学”的概念,指出了SNOM在细胞内部或膜表面进行单分子探测与单分子量化研究中的难题,并提出将其与超薄切片相结合以解决这些难题的思路。SNOM在各个领域的应用研究还远远不足,需要做更多的工作,其成像原理及图像数据的解析还需作深入研究。  相似文献   

2.
扫描近场光学显微镜(SNOM)是基于非辐射场的产生和探测,能够实现超衍射极限分辨率的光学成像。但纳米精度的压电陶瓷扫描器的非线性始终是影响成像质量的关键问题。该文提出了改善SNOM系统中压电陶瓷扫描器的非线性特性的方法。在测得的压电陶瓷位移一电压关系的基础上,运用校正压电陶瓷非线性的方法,使压电陶瓷扫描器位移输出的线性度大幅度提高,相关系数从O.99提高到O.9999。实验结果表明,经过非线性校正,SNOM光学图像质量得到明显改善。  相似文献   

3.
本文利用时域有限差分(FDTD)法,对聚氯乙烯(PVC)小球在透射式扫描近场光学显微镜(T-SNOM)和光子扫描隧道显微镜(PSTM)两种系统中的光场分布进行数值模拟比较.结果显示:SNOM中,激励为P偏振平面波时能较好地反映样品边沿的跳变,但X方向上干涉效应会对特定位置的样品成像起到强度调制作用;PSTM中,样品的近场强度分布能明显地反映样品形貌,但样品在X方向入射波的调制以及样品之间的反射波、散射波的干涉作用使得成像较为复杂.  相似文献   

4.
为了研究扫描近场光学显微镜(SNOM)中探针和粗糙样品表面的耦合相互作用,采用准静态电磁场理论的方法,提出了一种模拟SNOM的理论模型。在该模型中,探针和样品突起由极化偶极子表示,样品平面的诱导极化效应由影像偶极子表示,应用偶极子辐射理论可以得到系统的场方程,通过自洽的方法可以求出任意偶极子位置处的严格解析解。该方法与通过并矢传播子方法得出的结果完全相同,其优点在于实用性和计算的简便性。  相似文献   

5.
为了研究扫描近场光学显微镜(SNOM)光纤探针的光学特性,采用基于场追迹方法的光学软件VirtualLab Fusion进行了仿真实验,取得了SNOM光学探针尖端外部光场的分布情况。结果表明,沿z轴方向,不同截面上的光场分布都会呈现小孔衍射的图案,其中心斑点中心强度随着z值的变大而呈近似指数函数衰减,到z=100nm位置处几乎衰减为0;中心斑点轮廓线的半峰全宽随着z值的变大而呈现先不变后增大的趋势,其拐点处于z=20nm位置处,此时对应的中心强度值为7.2V/m2,这个强度值按指数函数计算正好处于z=0nm位置处强度的e-2。结果清晰显示了SNOM光学探针的光学特性,证实SNOM探针工作时需要与样品表面保持在10nm左右的必要性。  相似文献   

6.
褚宏祥 《光电技术应用》2009,24(5):27-29,43
扫描探针显微镜(SPM)作为一种广泛应用的表面表征工具,不仅可以表征三维形貌,还能定量地研究表面的粗糙度、孔径大小和分布及颗粒尺寸,在许多学科均可发挥作用.以纳米材料为主要研究对象,综述了国外最新的几种扫描探针显微表征技术,包括扫描隧道显微镜(STM)、原子力显微镜(AFM)和近场扫描光学显微镜(SNOM)等方法,展示了这几种技术在纳米材料的结构和性能方面的应用.  相似文献   

7.
高透过率、高分辨率纳米微探针的制备   总被引:2,自引:2,他引:0  
介绍了一种用于近场扫描光学显微镜(SNOM)中的高透过率光纤探针的制作方法。采用氢氟酸腐蚀低掺杂的普通单模石英光纤,选取适当比例的腐蚀液,并通过激光消融的方法得到直径、圆锥角均十分理想、表面光滑的针尖,所获探针直径变化范围为80~200nm,锥度40°~81°,透过率3.5×10-3。  相似文献   

8.
用扫描近场光学显微镜的针尖照明模式对ZnSe量子点团簇进行精确定位测量,研究了量子点团簇的超辐射效应。在理论上根据Wannier激子超辐射模型阐述了量子点系统的超辐射发光机制;实验上用荧光光谱表征ZnSe量子点溶液的荧光性质,用扫描近场光学显微镜(SNOM)表征单个量子点团簇的超辐射光谱。结果表明,在Wannier激子超辐射模型中,量子点团簇辐射衰变率受到量子点团簇的大小和辐射光谱的共同影响,在实验上得出团簇的辐射衰变率随团簇尺寸的增加而增大,同时,不同尺寸的量子点团簇产生的辐射光谱也会对其产生影响,理论和实验的结合验证了激子超辐射的适用性。此研究结果可广泛用于生物传感器和光子器件等领域。  相似文献   

9.
SNOM的光纤探针制备及扫描电镜观察   总被引:1,自引:0,他引:1  
扫描近场光学显微镜(SNOM)是一种新型超高分辨率光学显微镜。它既具有光学显微镜可在自然状态下观察样品,获得物体的光学信息,且对样品无任何损伤的优点,又由于采用了近场光学探测原理及技术,使得分辨率不受衍射极限的限制,从而实现光学显微镜的超高分辨率。目...  相似文献   

10.
生物样品折射率的空间变化导致了光学畸变的产生,这种畸变对于共聚焦显微镜观察厚的生物样品和活体体内组织成像是一种严重的限制。自适应光学(AO)技术是通过快速反应的变形镜使镜面发生形变来补偿像差,在共聚焦显微镜中应用自适应光学技术可以校正光学畸变,观察深层组织活动,进行活体成像和实时检测。详细分析了共聚焦显微镜中像差的来源及光学畸变的特点,讨论了目前在共聚焦显微镜中自适应光学校正的方案及研究现状,讨论了共聚焦显微镜中自适应光学的波前传感器、畸变测量和波前校正器,并探讨了目前超高分辨率显微成像技术的发展方向。  相似文献   

11.
《光机电信息》2011,(3):71-72
在普通条件下可观测细胞内部结构英国和新加坡研究人员3月1日报告说,他们制造出能够观测50nm大小物体的光学显微镜,这是迄今观测能力最强的光学显微镜,也是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。  相似文献   

12.
扫描近场光学显微镜(SNOM)是一种新型高分辨率光学显微镜。它突破了传统的光学显微镜所受到的衍射极限,可在超高光学分辨率下进行纳米尺度的光学成像。已报道的近场光学显微镜的分辨率已达10nm。因此,近场光学显微镜将在物理、化学、生物学及材料科学等领域有...  相似文献   

13.
浓锋 《半导体光电》1990,11(4):387-389
1 引言显微镜是一种常用的精密光学仪器。在微生物的研究和微细加工等领域,显微镜都是必不可少的。因此,在这些领域里,显微镜的配备和维护就很重要了。下面就显微镜常见的光学污染问题的解决方法进行分析,进而提出一种新的方法,即光学参数变换法。  相似文献   

14.
介绍了共焦扫描光学显微镜的结构、工作原理、特性、功能和在生物、医学及半导体计量中的应用,并与其他显微镜的特性进行了比较。  相似文献   

15.
扫描近场光学显微镜(SNOM)是新近发展起来的新型高分辨率光学显微镜,它可以对样品中纳米尺度区域的各种光学信息进行成像,将在生命科学、材料科学及信息产业有重要应用。接收式SNOM的光纤探针探测近场光信号的原理是:当针尖浸入样品表面的隐失场时,由偶极子组成的介质针尖受激产生辐射,从而将隐失波转变成传导波,由光纤探针传播到远处。因此,近场光学图像实际上是接收探针引入后形成的电磁场,对探针顶端作用而产生的散射光,通过光纤探针传输得到的光信号。因此,光纤探针的传输特性对近场光学显微镜的最终图像质量具有重要影响,研究光纤…  相似文献   

16.
在动态原子力与近场光学扫描显微镜中,探针与样品的间距关系到分辨率以及扫描速度这两个最重要参数的性能。在对几种主要的动态原子力/扫描近场光学组合显微镜的探针/样品间距控制模式分析的基础上,认为提高探针Q值是提高扫描显微镜分辨率的有效方法。但是,对采用检测控制探针振幅模式,期望在提高分辨率的同时加快扫描成像速度是不可实现的,因而限制了其发展的空间。而在检测控制探针频率模式下,提高探针Q值,可有效提高扫描探针显微镜的分辨率,且不会制约扫描成像速度的提高。该结论为将来的纳米操作和纳米超高密度光存储的实用化提供了可能,对大连理工大学近场光学与纳米技术研究所研制的原子力与光子扫描隧道组合显微镜(AF/PSTM)的改进和产业化具有积极意义。  相似文献   

17.
扫描切变力/近场光学显微镜研制及应用   总被引:2,自引:1,他引:1  
在发展光纤探针制备和探针与样品近场间距非光学控制等关键技术基础上,我们研制成能与倒置光学显微镜联合使用的扫描切变力/近场光学显微镜,并具有反射和透射等工作模式以及能在溶液环境中工作。利用这套系统,获得了多种样品的表面形貌和近场光学图像以及细胞内的荧光光谱。本文将对该系统和有关实验结果作简要介绍。  相似文献   

18.
飞秒激光和近场光学(SNOM)是近年来光科学的两大重要进展.它们分别产生了超快光谱和纳米小尺度光测量两个崭新研究领域.结合飞秒激光脉冲高时间分辨和SNOM小尺度空间光学探测的优势,实现时间和空间小尺度同时测量是进一步发展的趋势.本报告将综述国际在这一方面研究的进展并结合北大的研究工作,讨论这一系统组合存在的小信号探测、脉冲啁啾补偿等困难和问题以及应用和发展前景.  相似文献   

19.
讨论了近场光学显微术发展及其理论知识,重点介绍了近场光学显微镜的工作原理、构造设计、工作方式等,概述了近场光学显微术的应用领域和应用成果。探讨了近场光学显微术目前存在的主要问题和需要解决的问题。  相似文献   

20.
《光机电信息》2011,(6):58-58
研究人员日前在英国制造出了世界上最强大的光学显微镜,将有助于了解许多病毒和疾病的形成原因。通过把光学显微镜与透明的微球结合在一起——研究人员称之为纳米级光学显微镜,曼彻斯特大学的研究人员打破了光学显微镜的理论限制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号