首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从石化设备风险与状态分析入手,对基于风险和状态的石化设备检验与维修智能决策方法展开研究,详细论述石化生产能效和设备使用寿命.  相似文献   

2.
:基于前馈式神经网络模型 ,提出了一种新的化工设备维修决策方法。根据设备的各状态因素 ,判断出设备应属维修等级 ,制定相应维修策略。数值模拟表明 ,此法具有高效性、准确性和智能性  相似文献   

3.
针对工业橡胶混炼过程中门尼黏度标记数据有限,导致模型预测性能受限的问题,提出了一种半监督(SS)集成即时学习(EJIT)高斯过程回归(GPR)软测量方法,称为SSEJITGPR。当查询样本到来时,该方法通过在线迭代学习的方式获取高置信度伪标记样本,其中使用集成后的即时学习高斯过程回归(JITGPR)模型对非标记样本进行预测,并以集成预测方差作为置信度评价准则。随后,基于伪标记样本扩充后的建模数据库构建多样性的半监督JITGPR基模型。最后,采用有限混合机制实现基模型的自适应集成。与传统门尼黏度软测量方法相比,SSEJITGPR在处理局部过程特征、克服标记样本不足、预测可靠度不高等问题上表现出显著优势,其有效性和优越性通过工业案例进行了验证。  相似文献   

4.
基于无约束迭代学习的间歇生产过程优化控制   总被引:1,自引:1,他引:0       下载免费PDF全文
贾立  施继平  邱铭森  俞金寿 《化工学报》2010,61(8):1889-1893
针对基于迭代学习控制的间歇过程优化控制算法难以进行收敛性分析的难题,本文基于数据驱动的神经模糊模型提出一种新颖的间歇过程无约束迭代学习控制方法,通过调节因子的变化去除了约束条件,使控制轨迹在批次轴上收敛,并创新性地对优化问题的收敛性给出了严格的数学证明。在理论研究的基础上,将本文提出的算法用于间歇连续反应釜的终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。  相似文献   

5.
基于MPLS的间歇过程终点质量迭代优化控制   总被引:2,自引:0,他引:2  
提出了多向偏最小二乘(MPLS)模型和迭代学习控制相结合的方法,实现间歇过程终点时刻产品质量指标的控制.利用间歇过程的重复特性,根据前一批次的终点质量偏差调整下-批次控制变量的轨迹,从而使质量指标逐步接近于理想指标.本文提出的方法可以有效地消除由于模型误差和未知扰动引起的质量偏差.在苯乙烯间歇聚合反应模型上进行了仿真分析,验证了该方法的有效性.  相似文献   

6.
贾立  施继平  邱铭森 《化工学报》2010,61(1):116-123
针对基于迭代学习控制的间歇过程产品质量优化控制算法难以进行收敛性分析的难题,并且考虑到实际生产中存在外部干扰和不确定因素的影响,本文对间歇过程模型参数动态更新问题进行了分析,建立了间歇生产过程产品质量的神经模糊(NF)预测模型,提出了一种新颖的批次轴参数自适应调节算法。在此基础上,构造了一种基于数据驱动的间歇生产过程产品质量迭代学习控制算法,并对优化问题的收敛性给出了严格的数学证明。最后,将本文提出的算法用于一类典型的间歇过程终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。  相似文献   

7.
基于高斯过程和贝叶斯决策的组合模型软测量   总被引:2,自引:6,他引:2       下载免费PDF全文
雷瑜  杨慧中 《化工学报》2013,64(12):4434-4438
为了提高化工生产过程中软测量建模的估计精度,提出了一种基于高斯过程和贝叶斯决策的组合模型建模方法。该方法在对原始数据进行分类的基础上,利用高斯过程对每个子类建立软测量子模型,通过贝叶斯决策方法实现模型的联合估计输出。将该建模方法应用于某双酚A装置的软测量建模中,仿真结果表明,相比于传统的开关切换或加权组合多模型,该组合模型能在实际生产中充分利用样本信息,使得具有更高的估计精度和更强的泛化性能。  相似文献   

8.
9.
针对复杂储层存在测井油水层识别困难的问题,建立了基于过程神经元网络的油水层综合判别模型。提出了一种基于阿克玛插值的新的过程神经元网络学习算法并给出算法推导过程。实验结果表明,该判别方法避免了预先建立复杂的数学或物理模型来提取小层测井曲线形态模式特征的过程,有效改善了网络的运算速度和对实际数据的抗扰性,具有较好的稳定性和识别推广能力。  相似文献   

10.
崔晓惠  杨健  侍洪波 《化工学报》2018,69(12):5130-5138
实际工业过程中的观测样本大多会受到随机噪声的污染,因此带有噪声假设的概率模型得到广泛应用。传统方法直接对模型的因子进行监控,但由于建模所得因子中可能包含质量无关的信息,因此会增加质量相关故障的误报率,这对主要关心产品质量的生产过程是无益的。同时,针对实际过程与质量样本采样率不同导致的难以精确建模的问题,提出一种半监督正交因子分析(semi-supervised orthogonal factor analysis,Semi-SOFA)方法,建立概率模型,并对因子进行质量相关的正交分解,分别构造T2统计量;根据新样本是否含质量标签的数据性质计算相应的SPE统计量。提出的Semi-SOFA可有效检测出发生的故障是否影响质量,最后通过数值例子和Tennessee Eastman(TE)过程仿真验证了所提方法的有效性。  相似文献   

11.
针对间歇过程的迭代学习控制问题,提出了一种基于输入轨迹参数化的迭代学习控制策略。根据最优输入轨迹的主要形态特征,将其参数化为较少量的决策变量,降低传统迭代学习控制复杂性的同时维持良好的优化控制效果。基于输入轨迹参数化的迭代学习控制策略能保持算法的简洁性和易实现性,在不确定扰动影响下逐步改善产品质量。对一个间歇反应器的仿真研究验证了本文方法的有效性。  相似文献   

12.
针对电化学废水处理过程出口离子浓度无法在线检测的问题,提出了一种基于状态转移的K均值聚类算法的软测量建模方法。在分析内部反应机理的基础上,结合物料平衡和吸附动力学定理建立电化学过程的机理模型;由于单一的软测量模型难以满足实际的精度要求,提出一种基于状态转移的K均值聚类算法将原始数据集进行聚类,应用状态转移算法对K均值算法的初始聚类中心进行优化,同时,引入离群值矩阵动态迭代同时实现数据聚类和异常值检测;最后,对聚类后的不同训练子集分别建立子模型,综合各子模型得到基于多模型切换方法的软测量模型。通过某废水处理厂的现场数据进行实例验证,结果证明了所建立的电化学废水处理过程离子浓度软测量模型合理有效。  相似文献   

13.
间歇过程测量数据的高维、非线性、非高斯分布特征直接影响过程测量数据异常检测的准确性,为了融合多源数据异常检测信息,提升间歇过程测量数据异常检测精度,提出了一种基于多证据融合决策的间歇过程测量数据异常检测方法,该方法通过引入证据理论(Dempster-Shafer,D-S),采用主焦元判别伪证据和重新计算证据权重改进冲突证据处理方法,减小了冲突证据对多证据融合决策结果的影响,提高了间歇过程测量数据异常检测的准确率。构建了基于多证据融合的测量数据异常检测模型并将其应用到间歇过程测量数据异常检测决策判决中。实验结果表明,该方法能够融合多证据信息,有效地处理冲突证据,实现了间歇过程测量数据异常检测,降低了误检和漏检率。  相似文献   

14.
罗顺桦  王振雷  王昕 《化工学报》2022,73(3):1270-1279
在工业过程中,存在着辅助变量与主导变量数据比例严重失衡的问题。协同训练算法是其中一种利用无标签数据中的潜在信息以提升学习性能的模型训练方法。然而目前在协同训练软测量建模过程中,学习器之间存在严重的训练特性交叉重叠的问题,这将导致对主导变量的预测性能衰减。针对这一问题,提出基于二子空间协同训练算法的半监督软测量模型two-subspace co-training KNN(TSCO-KNN)。该模型将二子空间分块算法与协同训练算法相结合,利用辅助变量与主成分子空间PCS和残差子空间RS两个特征子空间的相关性程度,将数据变量拆分为两个具有显著差异性的学习数据集,进而使用KNN回归器进行协同训练,共同用于对主导变量的预测。最后在乙烯精馏塔塔顶乙烷浓度和TE过程产品浓度软测量中进行仿真研究,验证本文所提算法的有效性。  相似文献   

15.
付钊  贾立 《化工学报》2016,67(3):998-1007
间歇过程是一类具有典型复杂非线性特性的生产过程,可以利用模糊神经网络(NFM)建立其输入输出的非线性映射关系。在前期的研究中曾提出过基于概率密度函数(PDF)技术的模型训练方法,成功解决了传统的基于MSE准则训练方法模型泛化能力弱的问题,但又产生了概率密度难以估计及目标PDF未知时模型性能不稳定的问题。针对这两个问题,引入了新的概率密度窗宽估计方法,并提出了在目标PDF未知时采用PDF预估器及其收缩策略的算法。仿真实验表明:该方法能够保证足够的概率密度估计精度和模型预测性能。  相似文献   

16.
施方迤  汪子扬  梁军 《化工学报》2018,69(7):3083-3091
针对工业过程故障识别的需要和实际工业数据小比例有标签、大比例无标签的特点,研究了基于深度学习的半监督故障分类方法。在半监督阶梯网络的基础上,通过对网络结构和损失函数的改进,提出了半监督密集阶梯网络算法。该算法改进了原始的网络结构,添加了各层之间的密集连接,尝试最大化阶梯网络内部的数据信息流,使得各编码解码层之间的特征得以传递和复用。针对损失函数的特点,添加了无噪声编码层的预测输出损失,确保训练目标与模型输出一致。实验结果证明了所提出的新方法能在工业过程的小比例有标签数据情况下,获得理想的分类效果。  相似文献   

17.
基于T-S模糊模型的间歇过程的迭代学习容错控制   总被引:2,自引:1,他引:2       下载免费PDF全文
间歇过程不仅具有强非线性,同时还会受到诸如执行器等故障影响,研究非线性间歇过程在具有故障的情况下依然稳定运行至关重要。针对执行器增益故障及系统所具有的强非线性,提出一种新的基于间歇过程的T-S模糊模型的复合迭代学习容错控制方法。首先根据间歇过程的非线性模型,利用扇区非线性方法建立其T-S模糊故障模型,再利用间歇过程的二维特性与重复特性,在2D系统理论框架内,设计2D复合ILC容错控制器,进而构建此T-S模糊模型的等价二维Rosser模型,接着利用Lyapunov方法给出系统稳定充分条件并求解控制器增益。针对强非线性的连续搅拌釜进行仿真,结果表明所提出方法具有可行性与有效性。  相似文献   

18.
针对时域空间动态样本模式分类和标记信息的有效利用问题,提出了一种基于多示例学习的动态样本半监督聚类算法。根据时间信号的结构关系和模态特征,建立动态样本的多示例信息表示模型;通过定义一种可度量时变函数样本包间近似度的广义Hausdorff距离和基于近邻传播的聚类原则,构建多示例动态样本包的半监督聚类算法。算法利用样本包的类别先验知识构建样本集初始划分种子簇并探索样本的分布特征,采用基于广义Hausdorff距离的近邻传播策略调整样本包聚类,突出动态指标局部模态变化特征在样本分类中的差异性。以油田地质研究中测井曲线油层水淹状况判别为例,验证了模型和算法的有效性。  相似文献   

19.
张中秋  李宏光  石逸林 《化工学报》2023,74(3):1195-1204
当前,PID反馈控制依然是化工生产过程的主要控制策略。然而,由于复杂化工过程通常具有大时滞和非线性等特性,使得PID控制对于一些关键过程参数控制的性能不佳。为此,在实际工程中通常是现场操作人员依据自身经验对其实施人工预测调控。为了能够从历史调控数据中学习人工预测调控策略,提出了一种多任务学习级联网络(LSTM multi-task network cascades,LSTM-MNC)。根据过程变量长短期不同趋势建立预测短期变化和长期趋势的过程预测模型,并学习过程预测模型估计信息与操纵变量序列的因果关系,由被控变量偏差预测支持操纵变量序列生成,实现生产过程的智能化调控。在工业换热器过程仿真平台上进行实验,获得了满意的结果,验证了所提方法的有效性。  相似文献   

20.
张雨 《四川水泥》2023,(3):212-214
桥梁结构技术状态的预测是当前桥梁管理研究的关键问题。基于目前国内规范所规定的桥梁结构分类的前提下,阐述如何使用马尔科夫过程构建状态转移矩阵,对桥梁结构的技术状态进行预测,通过对桥梁技术状态的准确评估和预测为桥梁精准维护和维修决策提供依据。该计算和预测方法需要的信息较少,并且在收集信息方面相对简单,适用于现在的信息管理系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号