首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
醇胺法捕集燃煤烟气CO2工艺模拟及优化   总被引:2,自引:0,他引:2  
使用Aspen Plus模拟了醇胺捕集燃煤烟气CO2的过程,考察了吸收剂用量、贫液负荷、再沸器负荷等操作因素对脱碳过程的影响,并比较了不同醇胺溶液吸收与解吸性能。结果表明:吸收剂用量及浓度越大、烟气CO2含量越低、吸收塔级数越多,则CO2脱除率越高;贫液负荷增大会降低溶剂吸收能力,在相同的CO2脱除率下,αlean为0.08时再生热耗最小;再沸器总负荷随CO2回收率增加而增大,但单位热耗却先降低而后略微增大,并在回收率80%附近取得最小值;各醇胺溶液吸收能力PZ>MEA>DEA≈AMP>MDEA,再生能力PZ>AMP>MEA,兼顾吸收与解吸,应将它们复配使用。  相似文献   

2.
电厂烟气CO2捕集目前以醇胺法中的MEA为主,但MEA吸收剂的CO2吸收总量较低,对设备有腐蚀性。空间位阻胺作为一种新兴的吸收剂,具有较快的吸收速率和较大的吸收量,在烟气脱碳方面越来越引起重视。本文设计了一套小试实验装置,测试了不同浓度的MEA和AMP吸收烟气CO2的实验,对比了其吸收速率和总吸收量,分析了AMP溶液吸的收速率随溶液pH值和吸收剂浓度的变化规律,为空间位阻胺在电厂烟气脱碳工业中的应用提供理论指导。  相似文献   

3.
从吸收剂浓度、吸收剂进料温度、解吸塔的压力和解吸塔再沸器热负荷等影响因素对乙醇胺(MEA)吸收电厂烟气中CO2的过程进行模拟分析,从而提出合理的吸收和解吸条件,为乙醇胺吸收燃煤电厂排放的CO2的工艺过程优化提供理论指导。  相似文献   

4.
膜吸收法在大型工业燃煤电厂二氧化碳(CO2)捕集方面具有很好的应用前景,但烟气组分对该技术效果影响还有待进一步研究。本文以单乙醇胺(MEA)为吸收剂,开展了疏水性聚丙烯(PP)中空纤维膜组件分离模拟烟气中的CO2的实验研究,考察了吸收操作条件以及燃煤烟气中水汽和SO2对膜组件吸收效率的影响。结果表明,试验的最佳液气比为24 L/m3;MEA的浓度为0.6 mol/L;膜组件进口的温度变化对吸收效率基本没有影响;CO2的浓度在10%~20%内变动对吸收效率影响不大。与CO2相比,SO2会优先发生吸收作用,而水汽则会吸附在聚丙烯中空纤维膜组件的孔壁上,产生毛细管凝聚现象,阻塞CO2的渗透吸收。  相似文献   

5.
《应用化工》2017,(7):1335-1339
在水相中,将二乙烯三胺(DETA)、三乙烯四胺(TETA)、四羟丙基乙二胺(EDTP)、四甲基乙二胺(TEMED)、三乙烯二胺(TEDA)分别与硼酸(H_3BO_3)等摩尔反应制得胺类烟气脱碳吸收剂。结果表明,TETA/H_3BO_3吸收剂对烟气具有良好的CO_2脱除性能和可再生性能,在吸收温度30.0℃、吸收剂浓度0.60 mol/L的吸收条件下,CO_2吸收容量为0.920 mol/L,脱碳率均大于99.5%,在恒沸温度101.5℃、时间60 min解吸条件下,初次解吸率大于72%。考察了吸收剂TETA/H_3BO_3的重复使用性能,经34次吸收-解吸循环实验结果表明,CO2吸收后富液p H为8.85±0.05,脱碳率均超过99.5%,解吸CO_2后贫液p H为10.40±0.05,后33次解吸效率均大于90%。  相似文献   

6.
《应用化工》2022,(7):1335-1339
在水相中,将二乙烯三胺(DETA)、三乙烯四胺(TETA)、四羟丙基乙二胺(EDTP)、四甲基乙二胺(TEMED)、三乙烯二胺(TEDA)分别与硼酸(H_3BO_3)等摩尔反应制得胺类烟气脱碳吸收剂。结果表明,TETA/H_3BO_3吸收剂对烟气具有良好的CO_2脱除性能和可再生性能,在吸收温度30.0℃、吸收剂浓度0.60 mol/L的吸收条件下,CO_2吸收容量为0.920 mol/L,脱碳率均大于99.5%,在恒沸温度101.5℃、时间60 min解吸条件下,初次解吸率大于72%。考察了吸收剂TETA/H_3BO_3的重复使用性能,经34次吸收-解吸循环实验结果表明,CO2吸收后富液p H为8.85±0.05,脱碳率均超过99.5%,解吸CO_2后贫液p H为10.40±0.05,后33次解吸效率均大于90%。  相似文献   

7.
采用混合胺吸收剂替代传统一乙醇胺(MEA)吸收剂是降低有机胺法碳捕集工艺能耗的重要方法。利用Aspen plus软件模拟了以甲基二乙醇胺(MDEA)/哌嗪(PZ)混合胺为吸收剂的燃煤电厂每年百万吨CO2捕集工艺系统,考察了贫液负荷、MDEA/PZ混合胺浓度、MDEA/PZ比例和解吸压力等因素对解吸塔再沸器热负荷和冷凝器冷负荷的影响。通过对这些影响因素下吸收塔内液相温度分布和CO2负荷分布变化揭示了MDEA/PZ对CO2的吸收特性。此外,进一步分析了不同影响因素下解吸塔内气液相CO2浓度驱动力和气液相级间温度驱动力分布特性,发现了强浓度驱动力和低温度驱动力分布更有利于降低再生能耗。研究表明,由30%MDEA和20%PZ组成的混合胺液在贫液负荷为0.08和解吸压力为2.02×105Pa时,再沸器热负荷和塔顶冷凝负荷分别为2.76GJ/tCO2和0.60GJ/tCO2,相比传统MEA吸收剂降低了20.92%和40.0%。  相似文献   

8.
氨水与MEA喷雾捕集CO_2能力的比较   总被引:1,自引:0,他引:1  
为了研究喷雾捕集CO2技术的可行性,并比较新型吸收剂——氨水与传统吸收剂——MEA喷雾捕集CO2的能力,用微细雾化喷头将氨水与MEA溶液雾化,在喷雾塔中与模拟烟气逆向接触。研究了不同的氨水与MEA浓度、氨水与MEA流量、气体总流量、温度对CO2脱除率的影响。实验结果表明,喷雾捕集CO2技术可达很高的CO2脱除率(96.0%以上);CO2脱除率随着氨水、MEA浓度和流量的提高而增大,其中流量提高时MEA吸收CO2的脱除率增大幅度较大,可由36.9%增加到63.2%;随烟气流量的增大,MEA和氨水吸收CO2的脱除率分别下降16.5%和17.3%。在可比条件下,与相同浓度的MEA溶液相比,氨水脱除CO2的能力较强。  相似文献   

9.
PVDF中空纤维膜接触器分离烟气CO2   总被引:1,自引:0,他引:1       下载免费PDF全文
以水(H2O)、氢氧化钠(NaOH)、氨基乙酸钾(GLY)、氨基乙酸钾-哌嗪(GLY-PZ)水溶液为吸收剂,研究了疏水性聚偏氟乙烯(PVDF)中空纤维膜接触器分离CO2/N2模拟烟气中CO2的技术,具体考察了流动方式、气液流率、吸收液浓度和温度、原料气CO2浓度、填充密度等对膜接触器吸收效率的影响。结果表明,气液逆流的腔流程模式具有较高的分离效率。不同吸收剂的分离性能为:NaOH > GLY-PZ > GLY > H2O。温度对各种吸收剂的影响随其种类不同而有所差异。膜接触器对烟气CO2的分离效率随填充密度、吸收液浓度和流率的提高而增大,随气体流率及其中CO2浓度的增大而减小。  相似文献   

10.
采用聚丙烯中空纤维膜接触器,分别用去离子水、单乙醇胺(MEA)及N-甲基二乙醇胺(MDEA)水溶液作为吸收剂,对模拟烟气中的CO2分离进行了试验研究.考察了气体流速、入口气体中CO2体积分数、吸收剂流速、吸收剂浓度以及吸收剂种类等因素对CO2脱除率和总传质速率的影响.实验结果显示:3种吸收剂分离CO2的效率由大到小依次为MEA、MDEA、去离子水;CO2的脱除率和传质通量随吸收剂浓度、流速的提高均增加;CO2的脱除率随气体流速和CO2在入口气体中体积分数的增大而减小,而传质速率却随之增加.系统长时间运行后发现存在膜孔润湿现象,进而影响膜的传质性能.因此,吸收剂浓度须在传质和长时间运行性能之间进行权衡.  相似文献   

11.
中空纤维膜吸收烟气中CO2是一种清洁、高效、最具潜力的脱碳技术方法之一。本文建立了一个二维的中空纤维膜接触器平行逆流吸收混合气中CO2的非润湿模型。考虑轴向和径向扩散,模拟了EEA、EDA和PZ 3种吸收剂在不同操作条件下对CO2的脱除效果和传质性能。结果表明:脱碳性能从大到小为PZEDAEEA;气相参数对脱碳和传质的影响比液相参数更显著;提高气体流速、CO2浓度和气温,脱碳率均会下降;提高液速、吸收剂浓度和液温,脱碳率均增大,而传质速率只有在提高气温时会下降,其他参数的升高均会使其增大;应采用适当的液相参数,防止操作参数过高带来的不利影响。  相似文献   

12.
控制 MEA脱硫液中 CO2 ,也关系到 MEA的脱硫效率 ,主要阐述用 TOC测定仪 ,采用其中对无机碳的测定系统 ,利用红外对 CO2 的特定吸收波长 ,定量分析 MEA中 CO2 含量。该方法回收率测定贫液加标回收率在 96.0 %~ 1 0 4 .9%之间 ,富液加标回收率在 94.4%~ 1 0 2 .6%之间。标准偏差为 1 .34~ 1 .40。该方法快速、准确、灵敏 ,符合分析要求。  相似文献   

13.
栗秀萍  于洋  何旺  吕俊辉 《化工进展》2022,41(Z1):22-28
为提高工业上火电厂乙醇胺(MEA)吸收塔脱碳工艺中脱碳率和反应速率,提出了超重力技术耦合2-氨基-2-甲基-1-丙醇-对二氮己环(AMP-PZ)混合胺脱碳方法。正交实验表明:不同操作参数对脱碳率的影响显著性大小依次为:超重力因子、气液比、吸收剂质量浓度、主吸收剂含量、温度;最佳操作条件为:超重力因子为60,气液比为15,吸收剂质量分数为25%,主吸收剂质量分数为60%,温度为25℃,CO2脱除率可达97.16%。相对传统的乙醇胺(MEA)吸收塔法,CO2脱除率提高了7.16%。相同操作条件下,旋转填料床的脱碳反应速率常数比曝气反应装置高一倍。建立了超重力场中AMP-PZ脱碳表观动力学模型,不同操作参数对反应速率常数的显著性影响大小依次为:超重力因子>气液比>吸收剂质量浓度。  相似文献   

14.
燃煤电厂为城市中CO_2的主要排放源,烟气碳捕集是实现低碳城市的最佳方案。目前,碳捕集一般采用单乙醇胺(MEA)化学吸收法。基于国内外研究现状,分析了MEA碳捕集系统能耗特性,建立了再生能耗计算模型,研究了碳捕集率、吸收剂浓度、吸收剂中CO_2负荷对再生能耗的影响。结果显示,本文再生能耗计算模型得出的碳捕集系统单位再生能耗为3.96GJ/t;再生能耗随着捕集率的升高而增大,随着MEA质量分数的增加而降低,随着吸收剂中CO_2负荷的增加而减小。  相似文献   

15.
孟新东  王明辉 《气体净化》2006,6(C00):224-226
湖南金信化工有限公司年产合成氨180kt,其气体净化系统采用常压脱硫、中压变换、变换气脱硫、变换气脱碳、联醇生产、铜洗精炼的工艺流程。在变换气MDEA脱碳工序中,采用以CO2吸收塔、再生塔为基础的两段吸收两段再生的循环工艺:从CO2吸收塔底出来的脱碳富液,送到CO2再生塔顶,经溢流分布后,在再生塔内解析再生;从再生塔底部引出的脱碳贫液经水冷、过滤后,进入吸收塔上段脱碳液泵(该泵为本文专述,以下简称该泵为脱碳液泵),被送到吸收塔顶喷淋吸收变脱气中的CO2;从再生塔中部引出的脱碳半贫液,经水冷、过滤、混合后,进入吸收塔下段脱碳液泵,被送到吸收塔中部喷洒,吸收变脱气中的CO2。  相似文献   

16.
《应用化工》2016,(9):1665-1668
针对传统碳捕集吸收剂解吸能耗高的问题,建立了双胺溶液碳捕集系统。采用MEA-AEP双胺溶液进行捕集CO_2研究,研究了吸收温度、CO_2浓度、吸收液浓度对捕集率的影响,并对比了MEA-AEP溶液与MEA溶液的捕集效果以及工业应用潜力。结果表明,双胺溶液的最佳吸收温度为50℃,最佳吸收液浓度为3 mol/L,烟气中CO_2浓度应15%;在碳捕集效果上,MEA-AEP溶液明显优于MEA溶液。  相似文献   

17.
《应用化工》2022,(9):1665-1668
针对传统碳捕集吸收剂解吸能耗高的问题,建立了双胺溶液碳捕集系统。采用MEA-AEP双胺溶液进行捕集CO_2研究,研究了吸收温度、CO_2浓度、吸收液浓度对捕集率的影响,并对比了MEA-AEP溶液与MEA溶液的捕集效果以及工业应用潜力。结果表明,双胺溶液的最佳吸收温度为50℃,最佳吸收液浓度为3 mol/L,烟气中CO_2浓度应<15%;在碳捕集效果上,MEA-AEP溶液明显优于MEA溶液。  相似文献   

18.
N,N-二甲基乙醇胺(DMEA)是一种很有前途的吸收剂,具有较快的反应速率和较高的CO2捕集能力。在本研究中,DMEA作为一种新型吸收剂被应用于中空纤维膜接触器,用于从CO2/CH4气体混合物中分离CO2。通过建立二维稳态数学模型,模拟了MEA、DEA、MDEA和DMEA四种吸收剂在不同操作条件下对CO2吸收性能的影响。结果表明,脱碳性能大小为MEA>DMEA>DEA>MDEA;气相参数对脱碳率的影响比液相参数更显著;提高气体流速和CO2浓度,脱碳率均会下降;提高液速和吸收剂浓度,脱碳率均增大,适当提高吸收剂流速和吸收剂浓度可以提高CO2去除效率。此外,CO2吸收通量将随着气体速度的增加而增加,随着液相中CO2负荷的增加而减少。最后,通过两种影响因素共同作用确定了膜接触器分离酸性气体的最佳操作条件。因此,膜吸收法在天然气脱碳方面有良好的潜力。  相似文献   

19.
在温度298—338 K,压力300—700 kPa,吸收剂浓度1—3 mol/L的实验条件范围内,讨论了CO2-吸收剂体系气液二相基本达到平衡时,CO2吸收量与体系温度,压力及吸收剂浓度的关系。根据亨利定律,引入温度及压力相关因子,建立了CO2在单胺溶液中的溶解度模型。模型对CO2在MEA、DETA单胺溶液中的溶解度预测效果较好,与实验值比较,误差在1%以下。引入增强因子β=1.06,并以单胺在混合胺溶液中的摩尔分数为系数,将CO2在单胺溶液中的溶解度叠加获得CO2在MEA+DETA混合溶液中的溶解度模型。模型对MEA+DETA混合胺的预测误差在1%—10%。  相似文献   

20.
陈忠  陈少锋  王辅臣 《煤化工》2013,41(4):39-40,43
介绍了某20万t/a水煤浆气化醋酸项目的 NHD脱碳工艺流程,分析了脱碳低压闪蒸气系统中存在的问题及造成低压闪蒸气CO2纯度低的原因。通过采取改造换热器结构、增加气提N2量、控制贫液温度和循环量等措施,可使CO2纯度合格,醋酸系统稳定运行,减少碳排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号