首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lambropoulos JC  Xu S  Fang T  Golini D 《Applied optics》1996,35(28):5704-5713
In the Twyman effect (1905), when one side of a thin plate with both sides polished is ground, the plate bends: The ground side becomes convex and is in a state of compressive residual stress, described in terms of force per unit length (Newtons per meter) induced by grinding, the stress (Newtons per square meter) induced by grinding, and the depth of the compressive layer (micrometers). We describe and correlate experiments on optical glasses from the literature in conditions of loose abrasive grinding (lapping at fixed nominal pressure, with abrasives 4-400 μm in size) and deterministic microgrinding experiments (at a fixed infeed rate) conducted at the Center for Optics Manufacturing with bound diamond abrasive tools (with a diamond size of 3-40 μm, embedded in metallic bond) and loose abrasive microgrinding (abrasives of less than 3 μm in size). In brittle grinding conditions, the grinding force and the depth of the compressive layer correlate well with glass mechanical properties describing the fracture process, such as indentation crack size. The maximum surface residual compressive stress decreases, and the depth of the compressive layer increases with increasing abrasive size. In lapping conditions the depth of the abrasive grain penetration into the glass surface scales with the surface roughness, and both are determined primarily by glass hardness and secondarily by Young's modulus for various abrasive sizes and coolants. In the limit of small abrasive size (ductile-mode grinding), the maximum surface compressive stress achieved is near the yield stress of the glass, in agreement with finite-element simulations of indentation in elastic-plastic solids.  相似文献   

2.
Loose abrasive lapping hardness of optical glasses and its interpretation   总被引:3,自引:0,他引:3  
Lambropoulos JC  Xu S  Fang T 《Applied optics》1997,36(7):1501-1516
We present an interpretation of the lapping hardness of commercially available optical glasses in terms of a micromechanics model of material removal by subsurface lateral cracking. We analyze data on loose abrasive microgrinding, or lapping at fixed nominal pressure, for many commercially available optical glasses in terms of this model. The Schott and Hoya data on lapping hardness are correlated with the results of such a model. Lapping hardness is a function of the mechanical properties of the glass: The volume removal rate increases approximately linearly with Young's modulus, and it decreases with fracture toughness and (approximately) the square of the Knoop hardness. The microroughness induced by lapping depends on the plastic and elastic properties of the glass, depending on abrasive shape. This is in contrast to deterministic microgrinding (fixed infeed rate), where it is determined from the plastic and fracture properties of the glass. We also show that Preston's coefficient has a similar dependence as lapping hardness on glass mechanical properties, as well as a linear dependence on abrasive size for the case of brittle material removal. These observations lead to the definition of an augmented Preston coefficient during brittle material removal. The augmented Preston coefficient does not depend on glass material properties or abrasive size and thus describes the interaction of the glass surface with the coolant-immersed abrasive grain and the backing plate. Numerical simulations of indentation are used to locate the origin of subsurface cracks and the distribution of residual surface and subsurface stresses, known to cause surface (radial) and subsurface (median, lateral) cracks.  相似文献   

3.
This paper discusses partial-ductile-mode grinding, lapping and polishing of aspheric and spherical surfaces on glass. Industrial manufacture of glass lenses usually involves three operations: grinding (known as milling in the optical industry), tapping, and polishing. The fracture mode of material removal is dominant in the grinding process. While these three operations have been successful for machining spherical lenses, aspheric lenses have been manufactured in the absence of the lapping process, because of the considerable amount of ductile mode of material removal in grinding. The parameters that helped identify and solve problems in manufacturing were surface roughness, micro-fractures and ductile streaks on glass surfaces, and interferometric fringes.  相似文献   

4.
为提高功能陶瓷游离磨料研磨效率,减少大颗粒杂质侵入造成的表面损伤,提出了一种高效研磨用的新型半固着磨具(SFAT).分析了SFAT的基本工作机理及其制作过程.通过对典型的功能陶瓷工件硅片的研磨实验,分析了SFAT研磨过程中工件表面质量、加工效率、材料去除形式,以及工艺参数对加工过程的影响.实验结果表明,采用#1000 SiC磨料制作的SFAT研磨后的硅片表面粗糙度在10 min内,从215 nm提高到了30 nm.定义了单位材料去除量内表面粗糙度下降值,作为评价工件精加工表面质量改善效率的指标.实验中,利用SFAT研磨硅片的单位材料去除量内表面粗糙度下降值是相似条件下游离磨料研磨的2倍,这表明利用SFAT加工能够迅速改善工件的表面质量,能够获得比游离磨料加工更高的精加工效率.  相似文献   

5.
S Chandrasekar  T N Farris 《Sadhana》1997,22(3):473-481
Ceramic materials are finished primarily by abrasive machining processes such as grinding, lapping, and polishing. In grinding, the abrasives typically are bonded in a grinding wheel and brought into contact with the ceramic surface at relatively high sliding speeds. In lapping and polishing, the ceramic is pressed against a polishing block with the abrasives suspended in between them in the form of a slurry. The material removal process here resembles three-body wear. In all these processes, the mechanical action of the abrasive can be thought of as the repeated application of relatively sharp sliding indenters to the ceramic surface. Under these conditions, a small number of mechanisms dominate the material removal process. These are brittle fracture due to crack systems oriented both parallel (lateral) and perpendicular (radial/median) to the free surface, ductile cutting with the formation of thin ribbon-like chips, and chemically assisted wear in the presence of a reactant that is enhanced by the mechanical action (tribochemical reaction). The relative role of each of these mechanisms in a particular finishing process can be related to the load applied to an abrasive particle, the sliding speed of the particle, and the presence of a chemical reactant. These wear mechanisms also cause damage to the near ceramic surface in the form of microcracking, residual stress, plastic deformation, and surface roughness which together determine the strength and performance of the finished component. A complete understanding of the wear mechanisms leading to material removal would allow for the design of efficient machining processes for producing ceramic surfaces of high quality. The research was supported in part by the National Science Foundation through grants MSS 9057082, Jorn Larsen-Basse, Program Director and DDM 9057916, Bruce Kramer, Program Director.  相似文献   

6.
A model for lapping of glass   总被引:3,自引:0,他引:3  
  相似文献   

7.
Removal rate model for magnetorheological finishing of glass   总被引:2,自引:0,他引:2  
Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magnetorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.  相似文献   

8.
Johnson JB  Parks RE  Burge JH 《Applied optics》2012,51(18):4151-4156
Mixed-mode grinding occurs when a bound abrasive works in both brittle and ductile regimes simultaneously. Substrates ground in a mixed-mode behavior show reduced curvature induced by compressive surface forces than loose abrasives as demonstrated by observing the Twyman effect. This reduction in bending corresponds to reduced subsurface damage. This is verified by controlled acid etching, which shows the exponential decay of the compressive force per unit length. Loose abrasive particles, added to maintain pad wear due to low pressures, have no effect on the measured stresses. If loose abrasive wear ceases, the pads glaze. Glazing creates near-specular surfaces while reducing measurable stress. These effects for borosilicate glass and Trizact grinding pads are explored and quantified.  相似文献   

9.
Fang H  Guo P  Yu J 《Applied optics》2006,45(17):4012-4019
Based on experiments, the dependence of material removal and surface roughness on the characteristics of abrasive particles, on the workpiece, and on other process parameters such as working pressure and incidence angle in fluid jet polishing (FJP) technology were investigated. Experimental results show a volume removal rate that is approximately proportional to the square root of the Young's modulus (E) and inversely proportional to the square of the Knoop hardness (Hk) of glass. Similarly, surface roughness is also determined in FJP by elastic stiffness E and plastic parameter Hk. The influence of the incidence angle on surface roughness and material removal were studied, and a linear dependence of material removal on the working pressure was obtained. Further, it was found that an optical-quality surface can be achieved by use of Cerox 1650 abrasive particles in FJP and can satisfy the requirements of modern optical manufacturing.  相似文献   

10.
Because of the limitation of manufacturing capability, free-form glass optics cannot be produced in a large volume using traditional processes such as grinding, lapping, and polishing. Very recently compression molding of glass optics became a viable manufacturing process for the high-volume production of precision glass optical components. An ultraprecision diamond-turning machine retrofitted with a fast tool servo was used to fabricate a free-form optical mold on a nickel-plated surface. A nonuniform rational B-spline trajectory generator was developed to calculate the computer numerical control machine tool path. A specially formulated glass with low transition temperature (Tg) was used, since the nickel alloy mold cannot withstand the high temperatures required for regular optical glasses. We describe the details of this process, from optical surface geometry, mold making, molding experiment, to lens measurement.  相似文献   

11.
陶瓷结合立方氮化硼磨削工具材料制备研究   总被引:3,自引:1,他引:3       下载免费PDF全文
陶瓷结合立方氮化硼(CBN)磨削工具是一类用于磨削加工的新型陶瓷/玻璃复合材料。本文作者从复合材料制备理论角度探讨了这类材料的制备原则,并进行了试验研究。研究结果表明:CBN磨具的烧成温度以低于800℃为宜;陶瓷结合剂与CBN磨料的热膨胀系数匹配性对磨具强度有较大影响,具有较小热膨胀系数和较高强度的C1结合剂较适合CBN磨具制备。在一定温度范围内,适当提高烧结温度,有利于提高陶瓷结合剂桥相本身强度及结合剂与CBN磨料颗粒的结合强度。  相似文献   

12.
碳化硅(SiC)单晶基片已广泛应用于微电子、光电子等领域.本文针对传统游离磨料研磨加工的缺点,提出了固结磨料研磨SiC单晶基片技术,以前期研究的SiC单晶基片研磨膏配方,试制了一系列固结磨料研磨盘,研究了固结磨料研磨SiC单晶基片(0001)C面时的材料去除率、表面粗糙度及平面度,并与游离磨料研磨进行了对比.结果表明,固结磨料研磨后样品表面有深度较浅的划痕,游离磨料研磨后表面没有划痕,但表面呈凹坑状;游离磨料研磨后工件表面粗糙度轮廓最大高度Rz远大于固结磨料研磨;固结磨料研磨的材料去除率高于游离磨料,固结磨料研磨后的表面粗糙度Ra远低于游离磨料研磨,固结磨料研磨可提高平面度;研究结果可为进一步研究固结磨料化学机械研磨盘、固结磨料研磨工艺参数及机理提供参考依据.  相似文献   

13.
双盘直槽(double-disc and linear-groove, DDLG)研磨方法是以1个平端面研磨盘和1个具有多条直沟槽的研磨盘为对磨研具,对圆柱滚子的滚动面进行精密加工的新方法。在加工过程中,圆柱滚子沿直沟槽连续供料,在2个研磨盘的摩擦力矩驱动下连续自转。研磨盘材料的选择是搭建双盘直槽研磨设备的基础。为了确定适用于双盘直槽研磨方法的研磨盘材料组合,基于摩擦磨损实验展开相关研究。首先,基于摩擦原理,分析了圆柱滚子的运动状态和研磨盘材料的摩擦特性对研磨效果的影响,并确定了研磨盘材料摩擦系数的筛选条件。然后,通过销-盘摩擦磨损实验测试了铸铁、45钢、黄铜、聚四氟乙烯(polytetrafluoroethylene, PTFE)、有机玻璃(polymethyl methacrylate, PMMA)、125%铸铁基固结磨料和125%树脂基固结磨料等多种备选材料在研磨条件下的摩擦系数、耐磨性和排屑性能。最后,搭建了双盘直槽研磨试验台,通过观察圆柱滚子的自转情况来验证基于摩擦磨损实验的研具选材方法的合理性。通过摩擦磨损实验测得,铸铁和45钢的滑动摩擦系数大,磨削效率高,但耐磨性差,适合用作大去除量场合的上研磨盘材料;有机玻璃的滑动摩擦系数大,耐磨性好,磨削效率高,适合用作小去除量场合的上研磨盘材料;聚四氟乙烯的滑动摩擦系数小,耐磨性好,可用作下研磨盘直沟槽材料;固结磨料的滑动摩擦系数变化大且易堵塞,不适合用作研磨盘材料。研究结果可为双盘直槽研磨设备的设计提供可行的研具选材依据。  相似文献   

14.
材料特性对亲水性固结磨料研磨垫加工性能的影响   总被引:1,自引:0,他引:1  
为研究材料特性对亲水性固结磨料研磨垫的加工性能影响,本文研究了K9玻璃和硅片两种材料在不同加工顺序下研磨过程中的声发射信号和摩擦系数特征,采用扫描电镜分析磨屑的尺寸与形态.结果表明:不同加工顺序下工件的材料去除速率差别很大.与直接研磨硅片相比,先研磨K9玻璃再研磨硅片,硅片的材料去除速率大幅下降;相反,先研磨硅片再研磨K9玻璃,与直接研磨K9玻璃相比,K9玻璃的材料去除速率变化不大.无论采用哪种加工顺序,后研磨的工件表面粗糙度均比直接研磨的同种工件要大.扫描电镜的分析表明,硅片的磨屑尺寸集中在600 nm~1.5μm,磨屑大部分都棱角完整;而K9玻璃的磨屑尺寸集中在300 nm~500 nm左右,无明显棱角.硅片磨屑较大的尺寸与完整的棱角促进了研磨垫的自修正过程,所以硅片这类脆性较大的材料有利于研磨垫的自修正过程.  相似文献   

15.
热压烧结Si3N4陶瓷材料常应用于航天飞行器中关键耐高温零部件,但由于高硬度和低断裂韧性,其加工效率和加工表面质量难以满足制造需求。为了提高热压烧结Si3N4陶瓷旋转超声磨削加工质量,减小由于金刚石磨具磨损带来的加工误差,开展了磨具磨损行为研究。基于热压烧结Si3N4陶瓷旋转超声磨削加工实验,分析了金刚石磨具磨损形式;基于回归分析建立了金刚石磨具磨损量数学模型,揭示了加工参数及磨具参数与金刚石磨具磨损量间映射关系;并研究了磨损形式与磨具磨损量及加工表面粗糙度影响规律。结果表明:磨粒磨耗是旋转超声磨削Si3N4陶瓷用金刚石磨具最主要磨损形式,比例超过50%;主轴转速和磨粒粒度对磨具磨损量影响最为显著;且磨损量较小时,加工表面粗糙度值反而增加。以上研究可为提高旋转超声磨削Si3N4陶瓷加工精度和加工质量提供指导。  相似文献   

16.
Swirling Fluidized Bed Machining (SAFBM) is a nontraditional machining process and novel variant of Fluidized Bed Machining (FBM) in which the former has overcome certain drawbacks of the latter such as roughness variation and shading effect. SAFBM generates significant material removal and surface finish on the workpiece surface during the machining process with consistency and flexibility. The present detailed study emphasizes on the machining of softer materials such as brass and aluminum using abrasive particles such as silicon carbide in order to analyze the effect of various micro-cutting mechanisms on the generation of surface texture. This study examines the evolution of surface roughness profile after progressive machining with abrasives ranging from coarse, medium and fine grades of SiC with the help of optical microscopic images of the machined surface. The research concludes that using SAFBM, flat and uniform surface finishing with modification ratio in terms of roughness parameters ranging from 5 to 7 is possible within 7–8 hours of processing.  相似文献   

17.
本文主要研究硬脆晶体材料化学机械抛光中基片内材料去除非均匀性的形成机理.首先分析了化学机械抛光时抛光机的运动参数对硅片表面上相对速度分布非均匀性、摩擦力分布非均匀性、接触压力分布非均匀性及磨粒运动轨迹密度分布非均匀性的影响规律.然后通过基片内材料去除非均匀性实验,得出了抛光机运动参数对基片表面材料去除非均匀性的影响.通过比较理论分析与实验结果,基片表面上相对速度分布非均匀性、摩擦力分布非均匀性及接触压力分布非均匀性随转速的变化趋势与基片表面材料去除非均匀性的实验结果相差较大,只有磨粒在基片表面上的运动轨迹分布非均匀性与基片表面材料去除非均匀性的实验结果趋势相同.研究结果表明,基片表面材料去除非均匀性是由磨粒在基片表面上的运动轨迹分布非均匀性造成的,充分说明了基片表面材料去除的机械作用主要是磨粒的机械作用.  相似文献   

18.
In the manfacture of structural ceramic components, it has been well documented that the grinding costs can be as high as 90% of the total cost. Grinding costs of ceramics can be reduced by maximizing the material removal rates (MRR). A novel grinding technology that incorporates in-process dressing of metal bonded superabrasive wheels, known as Electrolytic In-Process Dressing (ELID) has been developed (1) which can significantly increase the MRR. This technique uses a metal bonded grinding wheel that is electrolytically dressed, during the grinding process, for continuous protrudent abrasive from superabrasi ve wheels. The principle of ELID grinding technology will be discussed in this paper as will its application for rough grinding. The effects of various parameters such as wheel bond type and type of power supply on the ELID grinding mechanism will also be addressed in this paper.  相似文献   

19.
The paper discusses the material removal process in refractory ceramics eroded by hydro-abrasive jets. In particular, bauxite, sintered magnesia, and magnesia chromite are eroded. The influence of abrasive particle velocity, local exposure time, abrasive mass-flow rate, and abrasive type is investigated. Erosion depth, specific erosion rate, and geometry of the generated cavities are measured and analysed. For particle velocity as well as for local exposure time, threshold conditions are identified. At low erosion intensity, target material properties and abrasive type do not affect the material removal process notably. From optical and SEM-microscopy it is further found that the material removal mode changes with the progression of the erosion process. In the upper region of the eroded kerf, the dominating material removal mode is the simultaneous cutting of matrix and inclusion grains (transgranular). In the lower range, the erosion process is characterised by the removal of the binding matrix followed by washing off the inclusion grains (intergranular). The balance between both modes depends on the energy delivered to the erosion site. These observations are explained by assuming a continuous loss in kinetic energy of the abrasive particles during HAE. Some features of non-linear fracture are noticed and suggestions are made how to use non-linear fracture parameters to evaluate erosion resistance.  相似文献   

20.
研磨加工过程中引入的亚表面损伤直接降低了光学零件的强度、长期稳定性、成像质量、镀膜质量和抗激光损伤阂值等重要性能指标,对其进行准确检测和全面表征是提高光学加工质量和加工效率的前提条件之一.为此,利用名义深度、最大深度和损伤密度沿深度分布3个表征参数对亚表面损伤进行全面的表征,并建立了上述参数的理论预测模型;使用磁流变斜面抛光测试技术结合图像处理方法测量了K9玻璃在不同研磨条件下的亚表面损伤,对理论模型进行验证.研究表明:上述3个表征参数能够对研磨亚表面损伤进行全面、定量和准确的描述;建立的理论预测模型实现了亚表面损伤深度的准确预测;研磨亚表面损伤最大深度约为磨粒粒度的1/2,最大深度与名义深度的比值为1.21±0.05;亚表面损伤密度沿深度呈指数递减分布,并在距离表面约为名义深度的1/2时,下降趋势变缓.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号