首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present a new process for fabricating tip-shaped polymer microstructure array coated by patterned metal layer. This new process involves three techniques including: micro-molding, patterned metal layer transfer, and electrochemical-based sacrificial layer. As we know, it is very difficult to remove the extra photoresist (PR) in the concave areas in traditional micro-fabrication technology, which hinders patterning metal layers on three-dimensional (3D) microstructures. The electrochemical-based sacrificial layer technique can effectively resolve this problem, which is verified by scanning electron microscopy (SEM) characterization. Comparative study between the 3D metal-coated polyimide microstructures fabricated with and without the electrochemical-based sacrificial layer step is also performed and SEM images proved the effect of the presented process. The applicability of the developed process is also demonstrated with the successful fabrication of a pyramid-shaped polyimide microelectrodes array for neural stimulation.  相似文献   

2.
A combination of soft lithography and lift-off processing is presented for the fabrication of sulfonated polyaniline (SPAN) microstructures. A soft lithography based micromolding process was used to pattern sacrificial layers using a thermoplastic polymer. SPAN was then polymerized in situ to coat the patterned substrate. The sacrificial layer was removed by lift-off in an organic solvent, leaving the patterned SPAN on the substrate. This process was performed on several rigid and flexible substrates including glass, silicon, and polyimide. The film thickness and roughness were measured as a function of reaction time using atomic force microscopy. Patterns were also imaged using scanning electron microscopy. This process provides a cost effective and versatile method of patterning SPAN and has potential applications in a number of conducting polymer devices.  相似文献   

3.
 Proton beam micromachining (PBM) has been shown to be a powerful technique to produce three-dimensional (3D) high-aspect-ratio microstructures (Watt et al., 2000). Potential commercial applications of PBM, which is a fast direct write technique, will become feasible if the fabrication of metallic molds or stamps is realised. Metallic components can be produced by electroplating a master from a microstructure produced in resist. The production of high-aspect-ratio metallic stamps and molds requires a lithographic technique capable of producing smooth and near 90° sidewalls and a one to one conversion of a resist structure to a metallic microstructure. PBM is the only technique capable of producing high-aspect-ratio microstructures with sub-micron details via a direct write process. In PBM, SU-8 (Lorenz et al., 1997) resist structures are produced by exposing the SU-8 resist with a focused MeV proton beam followed by chemical development and a subsequent electroplating step using Ni or Cu. The data presented shows that PBM can successfully produce high-aspect-ratio, sub-micron sized smooth metallic structures with near 90° sidewall profiles. Received: 10 August 2001/Accepted: 24 September 2001  相似文献   

4.
Large surface areas (tens of square centimeters to square meters) covered with high-aspect-ratio microstructures (HARMs) have potential applications in a wide range of fields including heat transfer, adaptive aerodynamics, acoustics, catalysts, seal and bearing design, and composite materials. HARMs are typically hundreds of micrometers in height, with widths ranging from a few micrometers to tens of micrometers, and they can be manufactured from a variety of materials such as metals, polymers, and ceramics. Three of the barriers to extensive use of large HARM-covered surfaces are cost, nonplanarity of typical surfaces, and adhesion of the microstructures to the surface. A starting point for inexpensive reproduction of large arrays of HARMs is the plastic molding step of the LIGA micromanufacturing process. In order to address the latter two problems, the standard LIGA process was modified/extended. Free-standing polymer sheets, perforated with a pattern of high-aspect-ratio throughholes, were clamped to conductive substrates. The sheets provide a template for electrodeposition of nickel microstructures onto the target surface. This process makes it economically feasible to electroform metal microstructures directly onto large planar and nonplanar metal surfaces (cylinders)  相似文献   

5.
Thermally activated solvent bonding of polymers   总被引:1,自引:0,他引:1  
We present a thermally activated solvent bonding technique for the formation of embedded microstructures in polymer. It is based on the temperature dependent solubility of polymer in a liquid that is not a solvent at room temperature. With thermal activation, the liquid is transformed into a solvent of the polymer, creating a bonding capability through segmental or chain interdiffusion at the bonding interface. The technique has advantages over the more commonly used thermal bonding due to its much lower operation temperature (30°C lower than the material’s T g), lower load, as well as shorter time. Lap shear test indicated bonding shear strength of up to 2.9 MPa. Leak test based on the bubble emission technique showed that the bonded microfluidic device can withstand at least six bars (87 psi) of internal pressure (gauge) in the microchannel. This technique can be applied to other systems of polymer and solvent.  相似文献   

6.
In this research, we present a simple and cost effective soft lithographic process to fabricate polylactic acid (PLA) scaffolds for tissue engineering. In which, the negative photoresist JSR THB-120N was spun on a glass subtract followed by conventional UV lithographic processes to fabricate the master to cast the PDMS elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode release such that the PLA scaffold can be easily peeled off. The PLA precursor solution was then cast onto the PDMS mold to form the PLA microstructures. After evaporating the solvent, the PLA microstructures can be easily peeled off from the PDMS mold. Experimental results show that the desired microvessels scaffold can be successfully transferred to the biodegradable polymer PLA. Encouraging progress in bovine endothelial cells seeding was observed.  相似文献   

7.
Creatv MicroTech has developed unique fabrication techniques to make high precision, high-aspect-ratio metal microstructures to custom specifications. A lithography based fabrication method permits precise fabrication of various microstructures. Collimators and antiscatter grids with continuous, smooth, thin, parallel or focused septa have been fabricated using deep X-ray and optical lithography, combined with metal electroforming. Microfabrication of high-aspect-ratio structures, especially of relatively large areas, presents many challenges: specialized mask design and X-ray mask fabrication; resist preparation, optimal exposure parameters, post-exposure processing, electroforming, polishing, and final assembly. Here, we present microstructures of various designs that we fabricated and describe the challenges that had to be overcome.  相似文献   

8.
Zhang  Tianchong  Yi  Futing  Wang  Bo  Liu  Jing  Wang  Yuting  Zhou  Yue 《Microsystem Technologies》2018,24(2):1223-1226
Microsystem Technologies - Fabrications of high-aspect-ratio microstructures (HARMS) using negative photoresist have been studied a lot by researchers recently, but the removal of the resist is...  相似文献   

9.
 In this paper, a process for 200 μm high-aspect-ratio micro-optical (HARM) structures fabricated by deep X-ray lithography (DXRL) of polymethylislesuioane-based spin-on glass (SOG) thick films is presented. The SOG material used in the whole procedures is polymethylsilsesquioxane (GR650), which is a kind of sol-gel derived material and can be cured at a reasonable low temperature (75 °C). A technique to cast thick GR650 films was established in the overall process. After consolidation, the GR650 thick films were machined to reach 200 μm uniformly. Then, as negative resists, the GR650 thick films were patterned directly by DXRL. X-ray irradiated regions can be selectively retained with high structural resolution by development in an organic solvent, such as methanol. Parameter screening was done to find minimum and maximum doses needed for patterning/cross-linking, to vary development time, and to explore different film thickness. The whole process is a novel of technique to create HARM structures based on SOG materials without using molds. This technique can be extended to considerably larger structural heights. Surface and bulk compositions of the irradiated films were measured by XPS and Fourier transform infrared spectroscopy. Surface quality by roughness testing system (WYKO RST) was investigated to fabricate the microstructure with a high-accuracy surface. Received: 31 October 2001/Accepted: 23 January 2002 This work was partially supported by NSF/LEQSF (2001-04)-RII-02 grant “Micro/Nanodevices for Physical, Chemical and biological Sensors”.  相似文献   

10.
We present on a carbon nanoparticle-filled SU-8 photosensitive polymer nanocomposite for use in microelectromechanical systems (MEMS) or microsystems. Exposure and fabrication of the material was carried out using X-ray lithography. The polymer nanocomposite was studied for its electrical, thermal and mechanical characteristics. It was found that at low filler weight percentages, the SU-8 polymer became electrically and thermally conductive. A comparative study of the lithography performance of this functionalized SU-8 to pure SU-8 was also performed. It was determined that UV lithography of the PNC was not suitable for thick films and that by using X-rays, thick film high-aspect-ratio microstructures were achievable. Such results are favorable for many applications such as monolithically integrated polymeric micro-resistive heating elements and polymeric micro-heat sinks.  相似文献   

11.
An intermediate-layer lithography (ILL) method has been developed in this work to generate multiple microstructures of different conducting polymers on the same substrate. Previous and current efforts in developing conducting polymer microsystems mainly focus on generating a device of a single function. When multiple micropatterns of different conducting polymers are produced on the same substrate, many microsystems of multiple functions can be envisioned. However, existing techniques present significant technical challenges of degradation, low throughput, low resolution, depth of field, and/or residual layer in producing conducting polymer microstructures. To circumvent these challenges, the ILL method has been explored to generate multiple micropatterns of different conducting polymers in a parallel manner. In this method, conducting polymer materials and a non-conducting polymer intermediate layer are first coated on a substrate, and are then patterned through a mold insertion at a raised temperature. In this work, the ILL has been used to successfully pattern three types of commonly used conducting polymers on the same substrate under a single mold insertion, and simulation has been conducted to gain a good understanding of the molding process. Due to distinctive advantages of simplicity, low cost and high throughput, the ILL has promising applications in fabricating micropatterns for polymer-based microsystems.  相似文献   

12.
Hot embossing is one of the main process techniques for polymer microfabrication, which helps X-ray lithography, electroplating, and molding (LIGA) to achieve low-cost mass production. Most problems in polymer micromolding are caused by demolding, especially for hot embossing of high-aspect-ratio microstructures. The demolding forces are related to the sidewall roughness of the mold insert, the interfacial adhesion, and the thermal shrinkage stress between the mold insert and the polymer. The incorporation of polytetrafluoroethylene (PTFE) particles into a nickel matrix can have the properties such as antiadhesiveness, low friction, good wear, etc. To minimize the demolding forces and to obtain high-quality polymer replicas, a Ni-PTFE composite microelectroforming has been developed, and the hot embossing process using Ni and Ni-PTFE LIGA mold inserts has been well studied in this paper. The morphologies, sidewall roughness, and friction coefficient have been explored in the fabricated Ni-PTFE LIGA mold insert. Finally, the comparison of embossed microstructures with various aspect ratios and the comparison of the embossing lifetimes of mold inserts have been carried out between Ni and Ni-PTFE mold inserts, which show a better performance of the Ni-PTFE mold and its potential applications.  相似文献   

13.
In this paper, we detail a strategy to self-assemble microstructures using chromium/copper (Cr/Cu) bilayers. Self-assembly was primarily driven by the intrinsic residual stresses of Cr within these films; in addition, the degree of bending could be controlled by changing the Cu film thickness and by introducing a third layer with either a flexible polymer or a rigid metal. We correlate the observed curvature of patterned self-assembled microstructures with those predicted by a published multilayer model. In the model, measured stress values (measured on the unpatterned films using a substrate curvature method) were utilized. We also investigated the role of two different sacrificial layers: 1) silicon and 2) water-soluble polyvinyl alcohol. Finally, a Taguchi design of experiments was performed to investigate the importance of the different layers in contributing to the stress–thickness product (the critical parameter that controls the curvature of the self-assembled microstructures) of the multilayers. This paper facilitates a deeper understanding of multilayer thin-film-based self-assembly and provides a framework to assemble complex microstructures, including tetherless self-actuating devices. $hfill$[2008-0308]   相似文献   

14.
Adhesive wafer bonding with a patterned polymer layer is increasingly attracting attention as cheap and simple 0-level packaging technology for microstructures, because the patterned polymer both fulfills the bonding function and determines the volumes between the two wafers housing the devices to be packaged. To be able to pattern a polymer, it has to be cross-linked to a certain degree which makes the material rigid and less adhesive for the bonding afterward. In this paper, a simple method is presented which combines the advantages of a patterned adhesive layer with the advantages of a liquid polymer phase before the bonding. The pattern in the adhesive layer is "inked" with viscous polymer by pressing the substrate toward an auxiliary wafer with a thin liquid polymer layer. Then, the substrate with the inked pattern is finally bonded to the top wafer. Benzocyclobuene (BCB) was used both for the patterned structures and as the "ink". Tensile bond strength tests were carried out on patterned adhesive bonded samples fabricated with and without this contact printing method. The bonding yield is significantly improved with the contact printing method, the fabrication procedure is more robust and the test results show that the bond strength is at least 2 times higher. An investigation of the samples' failure mechanisms revealed that the bond strength even exceeds the adhesion forces of the BCB to the substrate. Furthermore, the BCB contact printing method was successfully applied for 0-level glass-lid packaging done by full-wafer bonding with a patterned adhesive layer. Here, the encapsulating lids are separated after the bonding by dicing the top wafer independently of the bottom wafer.  相似文献   

15.
Extracellular matrix (ECM) hydrogels with patterned lumens have been used as a framework to generate more physiologically relevant models of tissues, such as vessels and mammary ducts, for biological investigations. However, these models have not found widespread use in research labs or in high-throughput screening applications in large part because the basic methods for generating the lumen structures are generally cumbersome and slow. Here we present viscous finger patterning, a technique to generate lumens through ECM hydrogels in microchannels that can be accomplished using manual or automated pipetting. Passive pumping is used to flow culture media through an unpolymerized hydrogel, creating a lumen through the hydrogel that is subsequently polymerized. Viscous finger patterning takes advantage of viscous fingering, the fluid dynamics phenomenon where a less viscous fluid will flow through and displace a more viscous fluid. We have characterized the technique and used it to create a variety of channel geometries and ECM hydrogel compositions, as well as for the generation of lumens surrounded by multiple hydrogel layers. Because viscous finger patterning can be performed with automated liquid handling systems, high-throughput generation of ECM hydrogels with patterned lumen is enabled. The ability to rapidly and cost-effectively create large numbers of lumens in natural polymers overcomes a critical barrier to the use of more physiologically relevant tissue models in a variety of biological studies and drug screening applications.  相似文献   

16.
Glass is widely used as a structural and functional material in micro-total-analysis-systems. Two low-cost techniques have been used to produce deep and vertical microstructures into glass. A commercially available photosensitive glass (Foturan™) is patterned by photolithography and etched in an HF solution for the construction of a microfluidic component. Channels and reservoirs were bonded to a poly(dimethylsiloxane) cover. A two-level structure with various depths (reservoirs and channels) was also made by a double exposure through two different masks. The other technique uses micro-ultra-sonic machining to form channels by erosion into borosilicate glass (Pyrex 7740). The two structuring techniques are compared with respect to surface profiles and surface states.  相似文献   

17.
We report the original design of a new type of electronic nose (e-nose) consisting of only five sensors made of hierarchically structured conductive polymer nanocomposites (CPC). Each sensor benefits from both the exceptional electrical properties of carbon nanotubes (CNT) used to build the conductive architecture and the spray layer by layer (sLbL) assembly technique, which provides the transducers with a highly specific 3D surface structure. Excellent sensitivity and selectivity were obtained by optimizing the amount of CNT with five different polymer matrices: poly(caprolactone) (PCL), poly(lactic acid) (PLA), poly(carbonate) (PC), poly(methyl methacrylate) (PMMA) and a biobased polyester (BPR). The ability of the resulting e-nose to detect nine organic solvent vapours (isopropanol, tetrahydrofuran, dichloromethane, n-heptane, cyclohexane, methanol, ethanol, water and toluene), as well as biomarkers for lung cancer detection in breath analysis, has been demonstrated. Principal component analysis (PCA) proved to be an excellent pattern recognition tool to separate vapour clusters.  相似文献   

18.
In this paper, we present a simple and cost-effective replication method of high-aspect-ratio polymer nanopillar array as a biomimetic gecko’s foot hair prototype. A UV nano embossing process was applied for the replication of polymer nanopillar arrays. Highly ordered straight nanoporous AAO (anodic aluminum oxide) templates were utilized as reusable master molds. Densely arranged high-aspect-ratio nanopillar arrays have been successfully fabricated by means of the UV nano embossing process with the AAO mold. Pull-off force measurements were carried out to characterize the adhesive force of the replicated nanopillar arrays on the polymer substrates based on the force–distance curves obtained from the atomic force microscope (AFM) with a modified AFM cantilever. The force measurement results showed that the larger diameter and the taller height of the nanopillars result in the larger adhesive force.  相似文献   

19.
This paper addresses the influence of centrifugal force and surface tension on the fluid filling processes in high-aspect-ratio microstructures. The microstructure was treated as a porous media. Numerical solutions are obtained for different parameters that governing the fluid filling flow phenomena. It was found that at certain high rotation speed of the filling system, efficient filling can be attained regardless surface is hydrophobic or hydrophilic. The pressure distribution during the filling process is also addressed. It is found that pressure variations along the filling length were almost in linear fashion from inlet pressure to the capillary pressure for both complete and incomplete filling.This work was supported by the National Science Council (series no. NSC91-2218-E-005-001) of Taiwan. The National Synchrotron Radiation Research Center (NSRRC) provided synchrotron radiation for fabricating high-aspect-ratio PMMA molds is acknowledged.  相似文献   

20.
In this paper we report fabrication of high-aspect-ratio micro-structure of Ni by electroplating, using a micro-machining technique of resists using proton beam writing (PBW) at Japan Atomic Energy Agency (JAEA). A micro-structure of 5 μm thick PMMA was fabricated by exposure using PBW at 1.7 MeV and by development. A Ni structure was then formed by electroplating on the micro-structure of PMMA. Vertical and smooth side walls observed by a scanning electron microscope (SEM) indicate that PBW can be a versatile tool for fabrication of resists and metal microstructure in combination with electroplating. The electroplated Ni structure can be used as a resolution standard, which enabled us to focus the proton beam down to 130 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号