首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present industry specifications allow thermoset insulated polymeric cables to be subjected to emergency conductor temperatures of up to 130°C. The effect of the high temperatures on cable integrity has been questioned. This study shows that cyclic, long-term or fast-rise application of 130°C to service-aged, water treed underground residential distribution (URD), crosslinked polyethylene (XLPE) insulated cables, result in an increase in dielectric strength. Contrary to what happens in new cables, an increase in temperature from ambient to 130°C also results in an increase in voltage breakdown strength. It appears that at high temperature, moisture and some remnant by-products of the crosslinking reaction such as volatiles, diffuse from the insulation, contributing to the higher levels of dielectric strength. It is shown that thermoplastic insulation shields on XLPE service-aged cables are adversely affected by emergency temperatures.  相似文献   

2.
20kV架空绝缘电缆防雷措施的研究   总被引:6,自引:0,他引:6  
20 kV电压等级作为一种新型的配电电压等级,目前已在世界范围内被公认为可以取代10 kV电压等级。工程应用表明,20 kV线路多采用架空绝缘电缆,但架空绝缘电缆的雷击事故率却明显高于传统的架空裸导线。针对上述状况,全面分析了架空绝缘电缆雷击事故的特点,计算了20 kV线路多种情况下的感应雷过电压幅值。计算结果表明,感应雷过电压幅值可大于450 kV,超过现有20 kV线路的绝缘水平。基于10 kV线路以往的防雷经验和措施,分析并提出综合运用氧化锌避雷器、过电压保护器、屏蔽分流线等防雷措施来保护20 kV架空绝缘电缆线路。该研究为20 kV配电网安全供电提供了参考。  相似文献   

3.
This paper provides data on four commercial tree retardant crosslinked polyethylene (TR-XLPE) and one cross-linked polyethylene (XLPE) insulated 15 kV cables supplied by three manufacturers. The cables have "super-smooth" conductor shields and "extra-clean" insulation and insulation shields. AC and impulse voltage breakdown and selected other characterization data are presented for cables that were aged immersed in room temperature water (15-30/spl deg/C) up to 24 months of a planned 48 months aging program. The five cables have high ac voltage breakdown strength, three of the TR-XLPE cables, actually increased in breakdown strength during aging. The one TR-XLPE cable that had the lowest ac voltage breakdown had vented trees at the insulation shield and high dissipation factor, which the other cables did not have. The impulse voltage breakdown strength of all cables decreased during aging; the cable with the lowest ac voltage breakdown also has the lowest impulse voltage breakdown. The dissimilar performance of the TR-XLPE cables and the excellent performance of the XLPE cable indicates evaluations at longer times are required to differentiate between modern TR-XLPE and XLPE insulated cables.  相似文献   

4.
DC testing of solid dielectric insulated cables has been shown to have limited usefulness. Currently, the two VLF test techniques, the author has found, seem to be the most promising alternatives for testing service-aged power cable systems with extruded dielectric insulation  相似文献   

5.
This article analyzes the technical specification trends for the design, installation, and use of 15 to 35 kV underground, insulated power cables by 60 of the largest investor-owned utilities. A distinctive 10-year trend has been established in insulation material preferences, and interesting new data are provided on the cable replacement and rejuvenation practices of these utilities. The results provide practical information that will enable all electrical utilities to compare their medium voltage underground cable specifications and installation practices with those of the largest utilities in their industry.  相似文献   

6.
The authors developed an insulation diagnostic system that makes automatic measurements of the dielectric dissipation factor and DC component in a hot-line XLPE (cross-linked polyethylene) insulated power cable and makes an overall judgement of cable insulation deterioration. This system was tested on XLPE cables in hot-line conditions, the criteria for judgement of insulation deterioration were established based on the results of measurements  相似文献   

7.
Water treeing is one of the factors leading to failure of medium voltage XLPE cables in long-term service. Increased moisture content inside oil-paper insulated cable is not desirable. To identify water tree degraded XLPE cables or oil-paper cables with high moisture content, diagnostic tests based on dielectric response (DR) measurement in time and frequency domain are used. Review of individual DR measurement techniques in the time and frequency domains indicates that measurement of one parameter in either domain may not be sufficient to reveal the status of the cable insulation. But a combination of several DR parameters can improve diagnostic results with respect to water trees present in XLPE cables or increased moisture content in oil-paper cables. DR measurement is a very useful tool that reveals average condition of cable systems. However, it is unlikely that DR measurement will detect few, but long water trees. In addition, DR cannot locate the defect or water tree site within the cable system. Combination of DR and partial discharge (PD) measurements can improve diagnostic results with respect to global and local defects. However, it is doubtful whether PD test can identify the presence of water trees inside a cable in a nondestructive manner. Further research is needed for more detailed conclusions regarding the status of a particular insulation and for predicting the remaining life of the insulation system.  相似文献   

8.
Propagation losses occur in medium voltage power cables as pulses propagate through them. Since cables have many components, these can make different contributions to the propagation losses. The relative contributions of the conductors, insulation and semi-conducting screens to the propagation characteristics of the cable are analyzed. The propagation characteristics of the cables are studied by a developed "approximate" model providing analytical expressions that can quantify the contributions to the losses by the different parts of the conductor and dielectric system. The model is compared with an "exact" model and is tested on four cables  相似文献   

9.
Functionally graded materials (FGM) have spatial distribution of a material property in order to achieve efficient stress control. An application of the FGM to a solid insulator (spacer) for a gaseous insulation system, like gas insulated switchgear, is expected to improve electric field (E-field) distribution around the spacer. In this paper, we describe the applicability of the FGM spacer to gas insulated power equipment. In the FGM spacer, we gave spatial distribution of dielectric permittivity to control the E-field distribution inside and outside the spacer. This paper includes following key results for the applications of the FGM. Firstly, E-field simulation results when applying the FGM by a finite element method are presented, in which we show the effective reduction of the maximum field strength by applying the FGM. Next, a fabrication technique of the FGM spacer sample with not only step-by-step but also continuous changes of permittivity is presented by use of centrifugal force. Finally, dielectric breakdown tests using FGM samples which are accurately controlled the spatial distribution of permittivity are carried out under lightning impulse voltage applications. The test result indicates the increase of breakdown voltage (BDV). From these results, we verified the applicability and the fabrication technique of FGM spacer for improvement of the dielectric strength in the gaseous insulation system.  相似文献   

10.
The development of a self-contained 500 kV oil-filled cable that is insulated with a cellulose-paper/plastic-film/cellulose paper laminate, and its accessories, is described. The dielectric loss of this cable has been confirmed to be about one-third that of conventional kraft paper cable. By reducing the insulation thickness to 25 mm, rather than the 33 mm used for conventional cables, the cable has been made very compact. This was possible because of the high dielectric strength of the laminate. As a result, the shipping reel length of the proposed cable, which is about 10% lighter in total weight and 10% smaller in overall diameter than conventional cables, can be greatly increased. The reliability and the stability of the cable have been demonstrated in a 1-1/2-yr field test  相似文献   

11.
This paper describes important aspects of partial discharge (PD) diagnostics of distribution power cables. PD parameter were discussed under consideration of attenuation and dispersive effects of cable characteristics. Field experiences with PD diagnosis on paper insulated cables (PILC) and cables with cross linked polyethylen insulation (XLPE) by energizing with Damped AC Voltage demonstrate relevant demands and the effective outcome for asset management decision support. The main difficulty is to evaluate the risc of PD occurrences on the reliability of the cable system. If an sufficient amount of PD diagnostic data for the cable components is available statistical methods can be used for determing threshold levels and relevant condition indexes for the asset management.  相似文献   

12.
The use of XLPE as the insulation for power cables has grown steadily since it first introduction more than 30 years ago. Today XLPE is rapidly becoming the preferred insulation system for even the highest transmission voltages. This preference is due to the high reliability, low dielectric losses, and low environmental impact that can be achieved with XLPE. The positive effects of high quality insulation materials on improved cable performance have been well known since the start of cable making. The purpose of this paper is to investigate the technical background for the cleanliness levels and to quantify the level of performance required from clean materials. The advantages of clean insulation materials are seen at all voltages. However, this work focuses on the technical basis for the benefits for HV and EHV cables, which typically are designed with a water impervious layer to ensure that the cable remains dry throughout its entire lifetime. The presence of metallic contaminants in MV cable is known to enhance the growth of trees by raising the electric stress level locally. The singular impact of cleanliness on the performance of MV cables is somewhat more complicated as it is influenced both by the cleanliness of the insulation and the ability of the insulation material to resist the growth of water trees.  相似文献   

13.
Polymer insulated medium voltage cables have experienced premature failures in-service, due in large part to water treeing. Research has shown that the initiation sites of these water trees are often located where there are stress enhancements at the insulation/semiconducting shield interface and where water soluble contaminants permeate into the insulation. Material suppliers, cable manufacturers and users have introduced improved materials and cable designs as well as processing, manufacturing, transport, storage, and installation techniques that minimize contamination. Despite these advancements, gradual contamination can still occur due to the diffusion of ground water into the insulation. In fact, certain contaminants that are carried through the semiconductor/insulation shield interfaces tend to promote water tree growth. Manufacturers are now beginning to recognise this problem and have suggested the use of moisture resistant cables with jackets made of PVC, polyethylene or metal/polymer laminates along with underjacket water absorbing materials. This paper discusses the effectiveness of different jackets and materials and presents data on the effectiveness of water absorbing materials in delaying water permeation into the insulation. A simple and efficient cable-cell technique was developed which monitored the effectiveness of complete cable designs, by measuring the long-term water permeation resistance of short lengths of distribution class cables  相似文献   

14.
X射线电缆绝缘线芯测偏仪的研制   总被引:1,自引:0,他引:1  
介绍了一种使用 X射线进行电缆绝缘线芯偏心测量的装置 ,可以测量高压交联电力电缆绝缘线芯各层(导体半导电屏蔽层、绝缘层、绝缘半导电屏蔽层 )的厚度及偏心。  相似文献   

15.
This paper, the first of two companion papers, describes a new approach to the application of the statistical "enlargement law" to power cable insulation. The results of this work allow for selecting better insulation for medium or high voltage cables. The selection is based on the results of dielectric strength tests performed on cable models or full size cables of a limited length. The relevance of the so-called crossing length, where one insulating compound performs better below it and another compound above this length, is discussed. The proposed theory was used to analyze the performances of two ethylene-propylene rubber (EPR) compounds and two cross-linked polyethylene (XLPE) compounds. The results are presented in the companion paper.  相似文献   

16.
The increase in electric stress due to a surface protrusion at the interface between a semiconductive shield and a polymer insulation layer in power cables can lead to localized electron injection into the polymer insulation and result in undesired material degradation. This paper reports the analyses of electric stress enhancement of surface protrusions in several commonly encountered medium- and high-voltage power cable configurations. First, a brief review of the electric stress enhancement theories is presented. Then evaluations using these theories for various power cable configurations are made, and it is shown that theories considering a hyperboloidal protrusion will exhibit more realistic stress enhancement results than the cases based on a spheroidal protrusion. Further examination reveals that, besides the sharpness of a protrusion, thickness of the insulation medium also plays a governing role in the stress enhancement at the interfaces between different dielectric media. Contrary to the conventional wisdom, it is a surprise to observe that a thicker insulation can actually cause higher stress enhancement at a protrusion tip, under a given applied voltage. Because of this, a flatter surface protrusion at a higher voltage setting, which usually has thicker insulation, can result in earlier degradation than a sharper protrusion at a lower voltage, even though sharper extrusions are expected to have higher stress enhancement. As a result, thicker insulation may not always be advantageous in the power cable design for higher voltage applications.  相似文献   

17.
The testing of oriented polyethylene tape with an embossed surface design for use as oil-impregnated insulation for flexible power cables is described. The development was carried out with small samples in the form of sheets, small cylindrical samples about 1 m long, and long cables either 15 m or 100 m long. Tests with these experimental configurations included investigating: (1) breakdown stress and statistics of breakdown; (2) dielectric loss measurements; (3) design of screens; (4) design of splices; (5) mechanical problems of taping and installing cables; and (6) oil impregnation and type of oil. The results point the way to the next development steps. These are: (1) development of thinner embossed tapes to exploit the potential of the high dielectric strength inherent in synthetic taped insulation; (2) development of accessories such as splices and terminations; and (3) complete system design to avoid a dramatic increase in dielectric loss caused by oil contamination. If the integrity of the insulation homogeneity can be maintained, it appears the high voltage breakdown stresses will be adequate to permit economical operation  相似文献   

18.
The use of nanocomposite polymers as electrical insulating materials has been growing rapidly in recent decades. The base polyethylene properties have been developed by adding small amounts of different fillers to the polyethylene material. It is economically to get polymer development by using cost-fewer nanoparticles; therefore, polyethylene dielectric properties are trapped by presence cost-fewer nanofillers like clay and fumed silica which are importance in development manufacture of power cables products. Dielectric strength is a vital pointer for quality of insulation materials of electrical power applications; hence, experimental measurements have been investigated on ac high voltage breakdown of new cost-fewer polyethylene nanocomposites materials. All experimental results of the new polyethylene nanocomposites have been compared with conventional polyethylene insulation materials; therefore, it has been specified the influence types and their concentrations of cost-fewer nanofillers on dielectric strength of polyethylene nanocomposite insulation materials.  相似文献   

19.
随着交联聚乙烯(XLPE)绝缘直流电缆电压等级的提高,对半导电屏蔽料的质量及可靠性的要求也越来越高。选用了2种国外高电压等级用直流半导电屏蔽料、一种国产较为优秀的半导电屏蔽料和国内XLPE直流电缆绝缘料作为试验材料,测试了3种屏蔽料的热、电性能,屏蔽与绝缘的复合性能,研究了3种屏蔽料对XLPE绝缘空间电荷的影响。通过对试验结果的综合分析,提出了炭黑填充量、炭黑粒径和基体树脂以及界面结合情况是影响半导电屏蔽料体积电阻率和空间电荷注入的关键因素。  相似文献   

20.
采用硅氧烷修复液修复交联聚乙烯电缆老化试样中的水树,进而分析修复效果及机理。将介质损耗因数为4%~6%,绝缘电阻7 500~10 000 MΩ的短电缆在7.5 kV 450 Hz交流电压下老化至介质损耗因数达到20%左右,绝缘电阻3 500~5 000 MΩ。然后用压力注入式修复装置把修复液注入缆芯对水树缺陷进行修复。以介质损耗因数、绝缘电阻和击穿电压为指标对修复效果进行评判;通过显微镜切片观察修复前后水树微观形态;通过仿真修复前后水树附近电场分布来分析和验证水树的修复机理。实验结果证明,修复液可以充分与电缆水树中的水发生反应生成胶状聚合物填充水树通道;修复后电缆介质损耗因数、绝缘电阻和击穿电压恢复到新电缆水平;改善了绝缘层电场分布;有效地抑制了水树生长。实验表明,该修复液可有效修复电缆中的水树缺陷,提高电缆绝缘水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号