首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.5 V four-quadrant CMOS current multiplier/divider   总被引:1,自引:0,他引:1  
A low voltage CMOS four-quadrant current multiplier/divider circuit is presented. It is based on a compact V-I converter cell able to operate at very low supply voltages. Measurement results for an experimental prototype in a 0.8 /spl mu/m CMOS technology show good linearity for a /spl plusmn/15 /spl mu/A input current range and a 1.5 V supply voltage.  相似文献   

2.
Low-power low-voltage reference using peaking current mirror circuit   总被引:4,自引:0,他引:4  
Cheng  M.-H. Wu  Z.-W. 《Electronics letters》2005,41(10):572-573
A low-power low-voltage bandgap reference using the peaking current mirror circuit with MOSFETs operated in the subthreshold region is presented. A demonstrative chip was fabricated in 0.35 /spl mu/m CMOS technology, achieving the minimum supply voltage 1.4 V, the reference voltage around 580 mV, the temperature coefficient 62 ppm//spl deg/C, the supplied current 2.3 /spl mu/A, and the power supply noise rejection ratio of -84 dB at 1 kHz.  相似文献   

3.
CMOS four-quadrant current multiplier using switched current techniques   总被引:2,自引:0,他引:2  
A new CMOS four-quadrant switched current multiplier, operating from a single 3V power supply and employing two-phase clocking scheme, is proposed. The circuit is designed to perform one multiplication per clock cycle. SPICE simulations using 0.5 /spl mu/m CMOS process parameters have been carried out to verify the multiplier performance.  相似文献   

4.
A 128-kb word/spl times/8-b CMOS SRAM with an access time of 3 ns and a standby current of 2 /spl mu/A is described. This RAM has been fabricated using triple-polysilicon and single-aluminum CMOS technology with 0.8-/spl mu/m minimum design features. A high-resistive third polysilicon load has been developed to realize a low standby current. In order to obtain a faster access time, a 16-block architecture and a data-output presetting technique combined with address transition detection (ATD) are used. This RAM has a flash-clear function in which logical zeros are written into all memory cells in less than 1 /spl mu/s.  相似文献   

5.
A novel analogue drive circuit for a liquid crystal cell has been designed. The design was realised in a 0.5 /spl mu/m CMOS process and eight phase-locked channels with independent voltage control were developed. The channels were shown to produce over 5.6/spl pi/ optical phase shift using a /spl plusmn/2.5 V power supply. This drive circuit is proposed for use in portable battery operated applications where optical phase control is desired  相似文献   

6.
This paper presents the analysis and characterization of partially depleted absorber (PDA) photodiodes. Coupling to these photodiodes is achieved through a planar short multimode waveguide (PSMW) structure. Electric transport in the PDA structure has been investigated and an equivalent electric circuit was developed. Measurements on 5/spl times/20 /spl mu/m/sup 2/ PSMW PDA photodiodes have shown 0.80 A/W responsivity with a fiber mode diameter as high as 6 /spl mu/m. The transverse electric/transverse magnetic polarization dependence was <0.5/spl plusmn/0.3 dB with -1-dB input coupling tolerances as high as /spl plusmn/2.0 and /spl plusmn/1.3 /spl mu/m for horizontal and vertical directions. The -3-dB bandwidth was 50 GHz, and the -1-dB compression current at 40 GHz was 17 mA corresponding to +4.5 dBm radio frequency (RF) power. Compared to similar evanescently coupled p-i-n photodiodes, the saturation current has been significantly improved while maintaining comparable bandwidth and high responsivity.  相似文献   

7.
This paper presents the design of an optical receiver analog front-end circuit capable of operating at 2.5 Gbit/s. Fabricated in a low-cost 0.35-/spl mu/m digital CMOS process, this integrated circuit integrates both transimpedance amplifier and post limiting amplifier on a single chip. In order to facilitate high-speed operations in a low-cost CMOS technology, the receiver front-end has been designed utilizing several enhanced bandwidth techniques, including inductive peaking and current injection. Moreover, a power optimization methodology for a multistage wide band amplifier has been proposed. The measured input-referred noise of the optical receiver is about 0.8 /spl mu/A/sub rms/. The input sensitivity of the receiver front-end is 16 /spl mu/A for 2.5-Gbps operation with bit-error rate less than 10/sup -12/, and the output swing is about 250 mV (single-ended). The front-end circuit drains a total current of 33 mA from a 3-V supply. Chip size is 1650 /spl mu/m/spl times/1500 /spl mu/m.  相似文献   

8.
A 16 bit/spl times/16 bit pipelined multiplier implemented in a two-layer metal 1.5 /spl mu/m CMOS/BULK technology has been developed. The design is based on the well-known modified Booth algorithm and is capable of operating at a 25 MHz clock rate. The multiplier is designed to be used as a macrofunction within larger chip designs. A structured design approach has been utilized so that reconfiguration of the basic array can be performed. The multiplier macrocell measures 1.7 mm/spl times/1.7 mm.  相似文献   

9.
A charge pump that utilizes a MOSFET body diode as a charge transfer switch is discussed. The body diode is characterized and a body diode model is developed for simulating the charge pump circuit. A 10% increase of voltage gain has been achieved in the proposed switching technique when compared with a traditional Dickson charge pump. The top plate and bottom plate switching technique have also been illustrated to improve the efficiency of the charge pump. A six-stage Dickson charge pump was designed to produce a 19 V output from a 3.3-V supply, using a 4 MHz, two-phase nonoverlapping clock signal driving the charge pump. The design was fabricated in a 0.35-/spl mu/m SOI CMOS process. An efficiency of 79% is achieved at a load current of approximately 19 /spl mu/A.  相似文献   

10.
This work presents a micro-power low-offset CMOS instrumentation amplifier integrated circuit with a large operating range for biomedical system applications. The equivalent input offset voltage is improved using a new circuit technique of offset cancellation that involves a two-phase clocking scheme with a frequency of 20 kHz. Channel charge injection is cancelled by the symmetrical circuit topology. With the wide-swing cascode bias circuit design, this amplifier realizes a very high power-supply rejection ratio (PSRR), and can be operated at single supply voltage in the range between 2.5-7.5 V. It was fabricated using 0.5-/spl mu/m double-poly double-metal n-well CMOS technology, and occupies a die area of 0.2 mm/sup 2/. This amplifier achieves a 160-/spl mu/V typical input offset voltage, 0.05% gain linearity, greater than 102-dB PSRR, an input-referred rms noise voltage of 45 /spl mu/V, and a current consumption of 61 /spl mu/A at a low supply voltage of 2.5 V. Experimental results indicate that the proposed amplifier can process the input electrocardiogram signal of a patient monitoring system and other portable biomedical devices.  相似文献   

11.
Schottky-transistor logic (STL) and integrated Schottky logic (ISL) have been fabricated in both 4-/spl mu/m and 2-/spl mu/m oxide isolated processes and characterized over the military temperature range (-55 to +125/spl deg/C ambient). The temperature coefficient of the average propagation delay (t/spl tilde//SUB pd/) is positive for STL over the entire operating current range. For ISL, the temperature coefficient of t/SUB pd/ is negative at low currents and positive at high currents. Both the 4-/spl mu/m and 2-/spl mu/m ring oscillator designs studied showed this behavior. At 25/spl deg/C, t/SUB pd/ data indicate no difference between STL and ISL for practical purposes. At -55/spl deg/C, the STL has a slight (~0.1 ns) speed advantage over ISL. At 150/spl deg/C (junction), the 2-/spl mu/m STL gates with a 200 /spl Omega///spl square/ base sheet resistance have the lowest minimum t/SUB pd/ of the gates studied (0.9 ns at a total current of 190 /spl mu/A) compared to the best for ISL at 1.0 ns and 150 /spl mu/A. The ISL operates at a lower logic swing than the STL at 105/spl deg/C, and has a speed advantage in the current range useful for VLSI. Additional data are presented which demonstrate the effect of the base resistance, epitaxial resistivity and substrate resistivity on delay.  相似文献   

12.
A 0.7-V MOSFET-only /spl Sigma//spl Delta/ modulator for voice band applications is presented. The second-order modulator is realized using a switched-opamp technique. All capacitors are realized using compensated MOS devices operated in the depletion region. A combination of parallel and series compensated depletion-mode MOSCAPs is used to obtain high area efficiency. The circuit is fabricated in a 0.18-/spl mu/m CMOS process. The only components used are standard n-MOS and p-MOS transistors with threshold voltages of approximately 400 mV. All transistors are operated within the supply voltage window of 0.7 V; voltage boosting techniques are not used. The active area is 0.082 mm/sup 2/. The modulator achieves 67-dB signal-to-noise-and-distortion ratio, 70-dB signal-to-noise ratio, and 75-dB dynamic range at 8-kHz signal bandwidth and consumes 80 /spl mu/W of power.  相似文献   

13.
A 128 K/spl times/8-b CMOS SRAM is described which achieves a 25-ns access time, less than 40-mA active current at 10 MHz, and 2-/spl mu/A standby current. The novel bit-line circuitry (loading-free bit line), using two kinds of NMOSFETs with different threshold voltages, improves bit-line signal speed and integrity. The two-stage local amplification technique minimizes the data-line delay. The dynamic double-word-line scheme (DDWL) allows the cell array to be divided into 32 sections along the word-line direction without a huge increase in chip area. This allows the DDWL scheme to reduce the core-area delay time and operating power to about half that of other conventional structures. A double-metal 0.8-/spl mu/m twin-tub CMOS technology has been developed to realize the 5.6/spl times/9.5-/spl mu//SUP 2/ cell size and the 6.86/spl times/15.37-mm/SUP 2/ chip size.  相似文献   

14.
Operation of type-II interband cascade lasers in the 4.3-4.7-/spl mu/m wavelength region has been demonstrated at temperatures up to 240 K in pulsed mode. These lasers fabricated with 150-/spl mu/m-wide mesa stripes operated in continuous-wave (CW) mode up to a maximum temperature of 110 K, with an output power exceeding 30 mW/f and a threshold current density of about 41 A/cm/sup 2/ at 90 K. The maximum CW operation temperature of 110 K is largely limited by the high specific thermal resistance of the 150-/spl mu/m-wide broad area lasers. A 20-/spl mu/m-wide mesa stripe laser was able to operate in CW mode at higher temperatures up to 125 K as a result of the reduced specific thermal resistance of a smaller device.  相似文献   

15.
A 35-ns 8K/spl times/8 CMOS SRAM with address-transition detection design techniques and a novel architecture is described. This design uses a 1.5-/spl mu/m HCMOS twin-well process with polycide gates. A technique for generating internal timing which is impervious to address skew and glitches has been developed. At long cycle times the circuit automatically powers down to a 8-mA active current level with the part selected.  相似文献   

16.
A circuit technique to detect unexpected power conditions such as battery separation is presented. Abrupt power-off owing to unexpected power conditions may cause an abnormal display in mobile TFT-LCDs because an adequate power-off sequence cannot be performed. The proposed abrupt power-off detector (APD) recognises decay of supply voltage and generates a signal to perform a proper power-off sequence. As mobile TFT-LCD driver ICs are usually operated with dual power supply, the APD detects abrupt power-off for both of the power supplies. To demonstrate the feasibility of the APD, a test chip was designed and fabricated in a 30 V/4 /spl mu/m 5 V/0.8 /spl mu/m 2.5 V/0.25 /spl mu/m triple-well CMOS process. Experimental results show that the proposed APD improves display quality by allowing a proper power-off sequence at all abrupt power-off conditions.  相似文献   

17.
A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this paper. With the proposed accurate on-chip current sensor, the sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC-DC converter feedback control. In addition, no external components and no extra I/O pins are needed for the current-mode controller. The DC-DC converter has been fabricated with a standard 0.6-/spl mu/m CMOS process. The measured absolute error between the sensed signal and the inductor current is less than 4%. Experimental results show that this converter with on-chip current sensor can operate from 300 kHz to 1 MHz with supply voltage from 3 to 5.2 V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 20 mV with a 10-/spl mu/F off-chip capacitor and 4.7-/spl mu/H off-chip inductor. The power efficiency is over 80% for load current from 50 to 450 mA.  相似文献   

18.
For gate oxide thinned down to 1.9 and 1.4 nm, conventional methods of incorporating nitrogen (N) in the gate oxide might become insufficient in stopping boron penetration and obtaining lower tunneling leakage. In this paper, oxynitride gate dielectric grown by oxidation of N-implanted silicon substrate has been studied. The characteristics of ultrathin gate oxynitride with equivalent oxide thickness (EOT) of 1.9 and 1.4 nm grown by this method were analyzed with MOS capacitors under the accumulation conditions and compared with pure gate oxide and gate oxide nitrided by N/sub 2/O annealing. EOT of 1.9- and 1.4-nm oxynitride gate dielectrics grown by this method have strong boron penetration resistance, and reduce gate tunneling leakage current remarkably. High-performance 36-nm gate length CMOS devices and CMOS 32 frequency dividers embedded with 57-stage/201-stage CMOS ring oscillator, respectively, have been fabricated successfully, where the EOT of gate oxynitride grown by this method is 1.4 nm. At power supply voltage V/sub DD/ of 1.5 V drive current Ion of 802 /spl mu/A//spl mu/m for NMOS and -487 /spl mu/A//spl mu/m for PMOS are achieved at off-state leakage I/sub off/ of 3.5 nA//spl mu/m for NMOS and -3.0 nA//spl mu/m for PMOS.  相似文献   

19.
A programmable-gain amplifier (PGA) circuit introduced in this paper has a dynamic gain range of 98 dB with 2 dB gain steps and is controlled by 6-bit gain control bits for a 3 V power supply. It has been fabricated in a 0.5 /spl mu/m 15 GHz f/sub T/ Si BiCMOS process and draws 13 mA. The active die area taken up by the circuit is 400 /spl mu/m /spl times/ 1170 /spl mu/m. A noise figure (NF) of 4.9 dB was measured at the maximum gain setting. In addition, an analysis of the bias current generation to provide dB-linear gain control is presented.  相似文献   

20.
A pixel structure for still CMOS imager application called the pseudoactive pixel sensor (PAPS) is proposed and analyzed in this paper. It has the advantages of a low dark current, high signal-to-noise ratio, and a high fill factor over the conventional passive pixel sensor imager or active pixel sensor imager. The readout circuit called the zero-bias column buffer-direct-injection structure is also proposed to suppress both the dark current of the photodiode and the leakage current of row switches by keeping both biases of photodiode and the parasitic p-n junction in the column bus at or near zero voltage. The improved double delta sampling circuits are also used to suppress fixed pattern noise, clock feedthrough noise, and channel charge injection. An experimental chip of the proposed PAPS CMOS imager with the format of 352/spl times/288 (CIF) has been fabricated by using a 0.25-/spl mu/m single-poly-five-level-metal (1P5M) n-well CMOS process. The pixel size is 5.8 /spl mu/m/spl times/5.8 /spl mu/m. The pixel readout speed is from 100 kHz to 10 MHz, corresponding to the maximum frame rate above 30 frames/s. The proposed still CMOS imager has a fill factor of 58%, chip size of 3660 /spl mu/m/spl times/3500 /spl mu/m, and power dissipation of 24 mW under the power supply of 3.3 V. The experimental chip has successfully demonstrated the function of the proposed new PAPS structure. It can be applied in the design of large-array-size still CMOS imager systems with a low dark current and high resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号