首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The technique of intracellular recording was used to examine the effect of M100907 (formerly MDL 100907), a highly selective 5-HT2A receptor antagonist and a potential antipsychotic drug (APD), on N-methyl-D-aspartate (NMDA) and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated responses in pyramidal cells of the rat medial prefrontal cortex in in vitro brain slice preparations. Bath administration of M100907, but not its inactive stereoisomer M100009, produced a 350% to 550% increase of NMDA-induced responses in a concentration-dependent manner with an EC50 value of 14 nmol/L, reminiscent of the action of clozapine. M100907 did not alter AMPA responses. Moreover, M100907 significantly increased the amplitude and duration of excitatory postsynaptic potentials and currents evoked by electrical stimulation of the forceps minor. We have generated several lines of evidence indicating that M100907 enhances glutamate receptor-mediated neurotransmission in pyramidal cells of the medial prefrontal cortex by facilitating NMDA-induced release of excitatory amino acids. The robust potentiation of NMDA receptor-mediated neurotransmission may explain, at least partly, the potential antipsychotic action of this compound. Furthermore, if M100907 proves to be an effective APD and if our findings can be extended to other atypical APDs, which are known to possess a relatively high affinity to 5-HT2A receptors, they may account for the purported efficacy of atypical APDs in alleviating some negative symptoms such as cognitive and executive functions.  相似文献   

2.
1. We have investigated the effects of a schizophrenomimetic drug phencyclidine (PCP) and N-methyl-D-aspartate (NMDA)-related agents alone or in combination on dopamine metabolism in the medial prefrontal cortex and striatum of the rats by measuring the tissue concentrations of dopamine and its metabolite, 3,4-dihyroxyphenylacetic acid (DOPAC), and the rate of dopamine disappearance (dopamine utilization) after its synthesis inhibition. 2. Systemic injection of PCP and selective, non-competitive, NMDA antagonists caused an increase of both tissue concentrations of DOPAC and dopamine utilization in the prefrontal cortex but not in the striatum. The PCP-induced augmentation of cortical dopamine metabolism was not influenced by selective lesion of ascending noradrenergic neurones. 3. Intra-prefrontal cortical infusion of PCP or selective competitive or non-competitive antagonists of the NMDA receptor mimicked the ability of systemic PCP injection to enhance DOPAC levels and dopamine utilization in the prefrontal cortex. However, an NMDA antagonist injected into the cell body area of the mesocortical dopaminergic neurones failed to affect dopamine metabolism in the prefrontal cortex. 4. The increasing effects of PCP and selective NMDA antagonists on cortical dopamine utilization were not additive, although a dopamine receptor antagonist, haloperidol, still accelerated the disappearance of dopamine, even in the presence of PCP. 5. Intra-cortical or intra-ventricular infusion of NMDA or D-alanine but not L-alanine, attenuated the ability of systemic PCP administration to facilitate prefrontal dopamine utilization. 6. These data suggest that PCP might activate prefrontal cortical dopaminergic neurones, at least in part, by blocking the NMDA receptor in the prefrontal cortex which participates in a tonic inhibitory control of the mesoprefrontal dopaminergic projections.  相似文献   

3.
Atypical antipsychotic drugs, such as clozapine, are distinguished from classical antipsychotics (e.g. haloperidol) by their lower liability for producing motor side-effects. Although initial studies suggested that the clinical efficacy of antipsychotic drugs is related to their affinity for the D2 dopamine receptor, the delayed onset of both the therapeutic effects and the extrapyramidal symptoms associated with these drugs implicates a more complex mechanism of action. In this study, we found that continuous (but not acute) treatment of rats with either drug caused an increase in dye coupling between neurons in the limbic component of the rat striatal complex (i.e. the shell region of the nucleus accumbens) after withdrawal of the drugs. Furthermore, continuous treatment with haloperidol, but not clozapine, also increased dye coupling in the motor-related part of the striatal complex (i.e. the dorsal striatum). Thus, both therapeutically effective drugs show a delayed effect on dye coupling between neurons in the accumbens shell, whereas only the drug associated with motor side effects altered coupling between cells in the dorsal striatum. Antipsychotic drugs may therefore alleviate the profound disturbances in cognitive function of schizophrenics by producing sustained alterations in the way signals from the cortex are integrated within these brain regions.  相似文献   

4.
Evidence suggests that the prefrontal cortex (PFC) plays an important role in the burst activity of midbrain dopaminergic (DA) neurons. In particular, electrical stimulation of the PFC elicits patterns of activity in DA neurons, closely time-locked to the stimulation, which resemble natural bursts. Given that natural bursts are produced by the activity of excitatory amino acid (EAA)-ergic afferents, if PFC-induced time-locked bursts are homologues of natural bursts, EAA antagonists should attenuate them. Hence, the NMDA (N-methyl-D-aspartate) antagonist CPP (3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid) and the AMPA (D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid)/kainate antagonist CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) were applied by iontophoresis to DA neurons exhibiting time-locked bursts during PFC stimulation. CPP produced a significant reduction in time-locked bursting. In contrast, CNQX (at currents which antagonised AMPA responses) did not. These effects of CPP and CNQX on time-locked bursting mirror the effects previously reported for these drugs on natural bursting. Since natural bursting and bursting induced by PFC stimulation are both blocked selectively by CPP, the present results increase the degree of analogy between the two burst phenomena, thereby adding extra support to the contention that the cortex is involved in producing the natural bursting in DA neurons.  相似文献   

5.
1. In cats anesthetized with chloralose, responses of medial pontomedullary reticular neurons to stimulation of the body surface, vestibular nerves, superior colliculi, pericruciate cortices, cerebral peduncles, and spinal cord were studied at different stimulus rates. Raising the rate from 1/10 s to between 1/4 s and 2/s caused a significant decrement or increment in the response of most neurons tested. Response decrement typically began near the beginning of the higher frequency stimulus sequence and increased throughout the sequence. Response increment usually began somewhat later, rose to a peak, and then declined. Recovery from response decrement or increment usually occurred within 30-60 s at a 1/10 s stimulus rate.2. Measurements of response latency and of changes occurring in the initial and longer latency portions of responses indicated that all components of a response typically decreased or increased in parallel. Background spontaneous activity did not change during response decrements, but sometimes increased during response increment.3. Where changes could be detected, response decrement usually developed more rapidly when a sequence of repetitive stimulation was repeated.4. Response decrement was most pronounced at the highest stimulation rates and lowest stimulus intensities. Response increment was usually maximal at a stimulus rate of 1/s: at lower rates less increment occurred; at higher rates responses began to exhibit decrement.5. Response changes varied with the type of stimulus applied. Response decrements predominated when the body surface, vestibular nerves, or ipsilateral superior colliculus were stimulated. Approximately equal amounts of response increment and decrement were produced by repetitive stimulation of the cerebral peduncles and contralateral superior colliculus. Stimulation of the surface of the pericruciate cortex or of the spinal cord usually produced a long-lasting response increment.6. Generalization of response decrement and increment was observed in cases where trains of stimuli at a rate of 2/s applied to one point produced changes in the response to stimulation of another point which was tested once per 10 s and where single-shock stimulation of the first point was without effect on the test response. Generalization of response decrement occurred most often when two nearby points were stimulated. Generalization of response increment appeared to spread widely between distant cutaneous points and stimuli of different kinds.7. The response decrement and increment observed in medial pontomedullary reticular neurons displayed most of the parametric features of behavioral habituation and sensitization (8, 33) and therefore appear to represent neural analogs of these latter phenomena. The properties of response decrement suggest that it may occur to a large extent within afferent pathways leading to medial reticular neurons...  相似文献   

6.
Glutamate receptor-mediated responses were investigated by using a whole-cell recording and an intracellular calcium ion ([Ca2+]i) imaging in gerbil postischemic hippocampal slices prepared at 1, 3, 6, 9, 12, and 24 hours after 5-minute ischemia. Bath application of N-methyl-D-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate showed that NMDA-, AMPA- and kainate-induced currents were enhanced in postischemic CA1 pyramidal neurons at 1 to 12 hours after 5-minute ischemia. NMDA and non-NMDA receptor-mediated excitatory postsynaptic currents (EPSC) were examined in postischemic CA1 pyramidal neurons at 3 hours after 5-minute ischemia to confirm whether synaptic responses are enhanced in the postischemic CA1 pyramidal neurons. The amplitudes of NMDA- and non-NMDA-receptor-mediated EPSC were enhanced in the postischemic CA1 pyramidal neurons. NMDA-, AMPA-, and kainate-induced [Ca2+]i elevations were also examined to determine whether the enhancement of currents is accompanied by the enhancement of [Ca2+]i elevation. The enhancements of NMDA-, AMPA-, and kainate-induced [Ca2+]i elevations were shown in the postischemic CA1. These results indicate that NMDA and non-NMDA receptor-mediated responses are persistently enhanced in the CA1 pyramidal neurons 1 to 12 hours after transient ischemia, and suggest that the enhancement of glutamate receptor-mediated responses may act as one of crucial factors in the pathologic mechanism responsible for leading postischemic CA1 pyramidal neurons to irreversible neuronal injury.  相似文献   

7.
32 male hooded rats made vicious with bilateral ventromedial hypothalamic lesions had bipolar electrodes implanted unilaterally in the lateral septum, medial septum, or cingulate cortex. Four days later, the Ss' reactivity and aggressiveness were evaluated 5 min before, during, and 5 min after stimulation at 20 muA (60 Hz, sine wave). Lateral septal stimulation suppressed reactivity and aggressiveness by almost 80% compared with pre- and poststimulation levels. Stimulation of neither the cingulate cortex nor the medial septum produced a change reliably different from that seen in unstimulated control Ss. Further tests with stimulation of the lateral septum at the 20 muA level showed that neither rewarding self-stimulation nor disruption of ongoing water drinking was produced. These results are congruent with evidence from lesion studies that the lateral septum normally acts to suppress reactivity and aggressiveness in the rat; they do not support previous suggestions that the medial septum is involved in the modulation of these behaviors. (30 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Inhibition of calcium currents in rat colon sensory neurons by kappa- but not mu- or delta-opioids. J. Neurophysiol. 80: 3112-3119, 1998. We previously reported that kappa-, but not mu- or delta-opioid receptor agonists (ORAs) have selective, potentially useful peripheral analgesic effects in visceral pain. To evaluate one potential site and mechanism by which these effects are produced, we studied opioid effects on high-voltage activated (HVA) Ca2+ currents in identified (Di-I) pelvic nerve sensory neurons from the S1 dorsal root ganglion (DRG). Results were compared with opioid effects on cutaneous neurons from L5 or L6 DRG. Di-I-labeled DRG cells were voltage clamped (perforated whole cell patch clamp), and HVA Ca2+ currents were evoked by depolarizing 240-ms test pulses to +10 mV from a holding potential of -60 mV. Neither mu-ORAs (morphine, 10(-6 )M, n = 16; [D-Ala2, N-Me-Phe4, Gly-ol5] enkephalin, 10(-6 )M, n = 12) nor delta-ORAs ([D-Pen2, D-Pen5] enkephalin, 10(-7 )M, n = 16; SNC-80, 10(-7 )M, n = 7) affected HVA Ca2+ currents in colon sensory neurons. In contrast, the kappa-ORAs U50, 488 (10(-6 )M), bremazocine (10(-6)M), and nalBzoH (10(-6 )M) significantly attenuated HVA Ca2+ currents in colon sensory neurons; effects on cutaneous sensory neurons were variable. A nonreceptor selective concentration of naloxone (10(-5 )M) and nor-BNI (10(-6 )M), a selective kappa-opioid receptor antagonist, reversed the inhibitory effect of kappa-ORAs. In the presence of N-, P-, or Q-, but not L-type Ca2+ channel antagonists, the effect of U50,488 on HVA Ca2+ currents was significantly reduced. Pretreatment with pertussis toxin (PTX) prevented the inhibition by U50,488. These results suggest that kappa-opioid receptors are coupled to multiple HVA Ca2+ channels in colon sensory neurons by a PTX-sensitive G protein pathway. We conclude that inhibition of Ca2+ channel function likely contributes in part to the peripheral analgesic action of kappa-ORAs in visceral nociception.  相似文献   

9.
The medial prefrontal cortex (mPFC) has been implicated in various attentional functions. This experiment examined the involvement of mPFC subregions in the allocation of attention in learning and action as a function of the predictive accuracy of cues. Rats with dorsal (encompassing anterior cingulate, prelimbic, and infralimbic cortices) or ventral (encompassing mainly infralimbic and dorsopeduncular cortices and tenia tecta) mPFC lesions were trained in a multiple-choice discrimination task in which operant nosepoke responses to some visual cues were consistently (100%) reinforced (CRF) with food, whereas responses to other visual cues were partially (50%) reinforced (PRF). In challenge tests designed to assess attention in the control of action, responding was directed more to CRF cues than to PRF cues in sham and dorsal mPFC-lesioned rats, but ventral mPFC-lesioned rats showed similar levels of responding to both CRF and PRF cues. Nevertheless, when given a choice between simultaneously presented CRF and PRF cues in a cue competition test, all groups responded more to CRF cues. In a subsequent Pavlovian overshadowing phase designed to assess attention in the acquisition of new learning, previously trained CRF cues overshadowed conditioning to novel auditory cues more than did PRF cues in dorsal mPFC-lesioned rats, whereas the opposite pattern was observed in sham and ventral mPFC-lesioned rats. These results suggest a dissociation within the mPFC in the use of reinforcement prediction information to allocate attention for new learning and for the control of action. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

10.
Previous work with recombinant receptors has shown that the identity of the NMDA NR2 subunit influences receptor affinity for both glutamate and glycine. We have investigated the developmental change in NMDA receptor affinity for both glutamate and glycine in acutely dissociated parietal cortex neurons of the rat, together with the expression during ontogeny of NR2A and NR2B mRNA and protein. Whereas there is little change in NMDA receptor glutamate affinity with age, a population of NMDA receptors emerges in 14- and 28-d-old animals with a markedly reduced affinity for glycine (mKD = approximately 800 nM) and a reduced sensitivity to the NR2B subunit-selective NMDA antagonist ifenprodil. These changes are paralleled by a developmental increase in the expression of NR2A. Thus, in mature animals a population of NMDA receptors appears with a lower affinity for glycine that might not be saturated under normal physiological conditions. Ifenprodil (10 microM) inhibits virtually all of the NMDA receptor-evoked current in very young neurons that contain a single population of receptors exhibiting a high affinity for glycine (mKD = approximately 20 nM). In older neurons, which contain NMDA receptors with both high and low affinities for glycine, ifenprodil (10 microM) inhibits both the high-affinity population and a significant proportion of the low-affinity component, thus revealing three pharmacologically distinct populations of NMDA receptors in single neurons. Moreover, these observations suggest that ifenprodil might bind with high affinity to NMDA receptors containing both NR2A and NR2B subunits as well as those containing only NR2B.  相似文献   

11.
Trace fear conditioning is a learning task that requires the association of an auditory conditioned stimulus (CS) and a shock unconditioned stimulus (US) that are separated by a 20-s trace interval. Single neuron activity was recorded from the prelimbic and infralimbic areas of the medial prefrontal cortex in rats during trace fear conditioning or nonassociative unpaired training. Prelimbic neurons showed learning-related increases in activity to the CS and US, whereas infralimbic neurons showed learning-related decreases in activity to these stimuli. A subset of prelimbic neurons exhibited sustained increases in activity during the trace interval. These sustained prelimbic responses may provide a bridging code that allows for overlapping representations of CS and US information within the trace fear conditioning circuit. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The acquisition of conditional freezing is abolished by N-methyl-D-aspartate (NMDA) receptor antagonism in the basolateral complex of the amygdala (BLA) during fear conditioning, suggesting that memory formation is prevented. The present study examined whether there is residual memory, or "savings," for fear conditioning in rats trained under amygdaloid NMDA receptor blockade. Rats infused with D,L-2-amino-5-phosphonovalerate (APV) into the BLA or central nucleus of the amygdala (CEA) during fear conditioning did not acquire either auditory or contextual fear conditioning. However, savings of conditional fear was exhibited by rats infused with APV into the CEA but not the BLA. These results suggest that both the BLA and CEA play a critical role in the acquisition of conditional fear but that the BLA is able to process and retain some aspects of aversive memories in the absence of the CEA. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Muscarinic receptors in the spinal cord have been shown to mediate antinociception and alter blood pressure. Currently, there is much interest in identifying which muscarinic receptor subtypes regulate these functions. Toward that end, this study aimed to identify and localize the muscarinic receptor subtypes present in spinal cord using in vitro receptor autoradiography with [3H]-pirenzepine and [3H]-N-methylscopolamine. The results showed that M2 binding sites were distributed throughout the dorsal and ventral horns, whereas M3 binding sites were localized to laminae I to III of the dorsal horn. Only background levels of M1 binding sites were detected. Saturation binding assays using [3H]-pirenzepine in spinal cord homogenates confirmed the absence of M1 receptors. Competition membrane receptor assays using [3H]-N-methylscopolamine and the unlabeled antagonists pirenzepine, 11-2[(-[(diethylamino)methyl]-1-piperidinyl)-acetyl]-5, 11-dihydro 6H-pyrido(2, 3-b)(1, 4) benzodiazepine-one, methoctramine, and methoctramine in combination with atropine corroborated the autoradiographic findings and also revealed the presence of M4 binding sites. The finding that M2 and M3 binding sites were localized to the superficial laminae of the dorsal horn where nociceptive A delta and C fibers terminate suggests the possibility that either or both of these muscarinic receptor subtypes modulate antinociception. The present demonstration of M4 binding sites in spinal cord is consistent with the possibility that M2 and/or M4 receptors are involved in the regulation of blood pressure at the spinal level.  相似文献   

14.
The extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum and the nucleus accumbens were measured in awake, freely-moving rats. Clozapine (20 mg/kg, i.p.) increased extracellular DA and HVA in both regions but increased DOPAC only in the striatum. Scopolamine (1 mg/kg), although it had no effect by itself in the striatum or nucleus accumbens, inhibited the ability of clozapine to increase extracellular DA, DOPAC and HVA concentrations in the striatum. The clozapine-induced increase in DA in the frontal cortex was not blocked by scopolamine. Haloperidol (1 mg/kg, i.p.) and thioridazine (10 mg/kg, i.p.) also increased extracellular DA, DOPAC and HVA in the striatum, but scopolamine pretreatment did not inhibit these increases. The results suggest that clozapine differs from haloperidol and thioridazine in that the effect of clozapine, but not that of the two neuroleptic drugs, to increase DA release in the striatum acutely depends on muscarinic receptor stimulation. These results suggest that clozapine, despite its strong muscarinic antagonist properties, does not produce full blockade of muscarinic receptors in vivo in the striatum. The interaction of clozapine with the cholinergic system in the striatum could be relevant to its lack of ability to produce extrapyramidal symptoms or tardive dyskinesia.  相似文献   

15.
The aim of this study was to investigate putative effects of calcitonin gene-related peptide on developing dopaminergic neurons in the ventral mesencephalon. To determine a time-point for a physiological role of calcitonin gene-related peptide in the development of this system, we first investigated calcitonin gene-related peptide messenger RNA expression in the ventral mesencephalon of Wistar rats at embryonic days (E) 11-19. Calcitonin gene-related peptide messenger RNA was not detectable at E11, i.e. prior to the appearance of dopaminergic neurons in this area. From E14 to E19, calcitonin gene-related peptide messenger RNA was expressed in increasing amounts. We therefore investigated the effects of calcitonin gene-related peptide on serum-free cell cultures established from the E14 midbrain floor. Addition of calcitonin gene-related peptide (200 ng/ml) every other day significantly increased neuronal differentiation, including longer tyrosine hydroxylase-positive neurites, enhanced immunoreactivity for growth-associated protein-43 and increased dopaminergic uptake per neuron. These effects were maximal after seven to eight days. Calcitonin gene-related peptide acted synergistically with fibroblast growth factor-2 on these parameters. In contrast to fibroblast growth factor-2, however, calcitonin gene-related peptide did not promote survival of tyrosine hydroxylase-immunoreactive neurons. Lack of calcitonin gene-related peptide expression in the mesencephalon at E11 was paralleled by a lack of effect of calcitonin gene-related peptide on early presumptive dopaminergic neurons in terms of eliciting this phenotype. Our data suggest that calcitonin gene-related peptide may act physiologically as a differentiation-promoting factor for phenotypically defined dopaminergic neurons during a time period when dopaminergic neurons assemble in the ventral mesencephalon and grow axons towards their targets.  相似文献   

16.
Earlier studies have demonstrated that cold water swim (CWS) produces stress-induced analgesia in tests of brief, phasic pain and produces a delayed nociceptive response (DNR) for more prolonged tonic pain. The present study reports the effect of repeated CWS on tonic pain, as measured by the formalin test. One group of rats was exposed to a 3.5-min swim in 2 degrees C water immediately prior to the formalin injection, to a 1.5-min swim at 50 min, and to another 1.5-min swim at 100 min postformalin injection. Compared to the no-swim control group, subjects which received repeated CWS had dramatically altered formalin pain responses. Formalin responses began just over 3 h postformalin injection, peaked at 4 h, and were still present at 5 h. Inspection of individual responses revealed a substantial degree of variability in the onset of responses, although the magnitude and duration of the formalin pain response remained at the same levels as those of control subjects. The lack of a decrease in the magnitude and duration of the delayed formalin responses indicates that repeated CWS does not produce analgesia for tonic pain. The period of stress, therefore, produces pain suppression but not loss of the mechanisms that subsequently underlie the pain. Earlier controls have ruled out peripheral mechanisms (such as retention of the formalin in the paw tissue). Rather, a memory mechanism appears to have been indicated and it is not lost, but persists until it can be manifested. Further research is needed to study the mechanisms responsible for the DNR.  相似文献   

17.
As a part of the mesocorticolimbic system, the medial prefrontal cortex (mPFC) is thought to participate in the regulation of locomotor activity, motivation and reward. The mPFC consists of at least three different subareas. In previous lesion studies examining this region usually large parts of the mPFC were destroyed, with little discrimination between the different subareas. Therefore, this study was designed to selectively lesion the prelimbic area of the mPFC using a relatively low dose of quinolinic acid. In a conditioned place preference (CPP) experiment, lesioned and control animals were treated with cocaine (15 mg/kg), amphetamine (4 mg/kg), morphine (10 mg/kg) or MK-801 (0.3 mg/kg) to induce CPP. The lesion blocked the development of CPP only in animals receiving cocaine, but not in animals receiving amphetamine or morphine. MK-801 failed to produce a CPP in both lesioned and unlesioned animals. During the conditioning experiment, the acute locomotor response to the different drugs was also measured. Only the response (in terms of locomotion and rearing) to cocaine and MK-801 was reduced to a significant extent by the lesion, while the response to amphetamine and morphine was not affected. Also, the lesions did not cause any changes in the spontaneous activity of the animals when tested without drug. These results show that even small lesions of the prelimbic subarea of the mPFC are sufficient to produce behavioral effects. However, these are apparent only when the animals are challenged with cocaine or MK-801, but not with amphetamine or morphine, or when drug-free. This suggests that the mPFC might have a special role in mediating cocaine and MK-801 effects.  相似文献   

18.
Using a combination of radioactive and non-radioactive in situ hybridizations, the expression of mu and kappa opioid receptor mRNA was investigated in neurons in the female rat preoptic nucleus expressing galanin and gonadotropin-releasing hormone (GnRH) mRNA. Numerous cells expressing both mu or kappa and galanin were found in the intermediate and rostral regions of the preoptic area whereas little co-localization was observed at the rostral level. The number of kappa/galanin expressing cells was greater than that of mu/galanin cells. mu/galanin co-localization was observed essentially in the anteroventral preoptic nucleus while neurons expressing kappa/galanin were present in both the anteroventral preoptic nucleus and in the periventricular hypothalamic nucleus. Co-localization of GnRH with mu or kappa could not be detected in the preoptic area. These observations showed that galaninergic neurons but not GnRH neurons of the preoptic area might be directly regulated by endogenous opioid peptides.  相似文献   

19.
Retinal cytosolic Ca2+/calmodulin-dependent protein kinase II (CaM KII) was isolated from hatched 6-wk chicken retinae by ultracentrifugation and affinity chromatography using calmodulin (CaM) and anti-CaM KII-alpha columns. Samples from different fractions were examined with SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and silver staining or immunoblotting. Comparisons were made between the final antibody affinity eluates from retina and forebrain. Silver-stained gels showed that multiple proteins were present in the antibody affinity eluates from retina, including major proteins of 178, 56, and 45 kDa and several minor proteins. Immunoblots revealed that CaM KII-alpha was present in eluates from the retina and forebrain. CaM KII-beta was present in the antibody eluate from forebrain but not retina. The latter subunit was present in the crude homogenates of the retina. Regarding the antibody eluate from retina, the possibility that the major 56 kDa protein was tubulin was ruled out, but protein tau (tau) and synapsin I were present. The presence of multiple proteins in the antibody affinity eluate indicates that these proteins were coisolated in a CaM KII-alpha-associated protein complex. The finding that protein tau and synapsin I are associated with retinal CaM KII provides further insight into the mechanisms underlying the function of the kinase in this tissue. The lack of cytosolic CaM KII-beta subunit in the antibody affinity eluate from retina is indicative of a brain region-specificity in subunit composition of the kinase.  相似文献   

20.
Epigenetic factors are known to influence the differentiation of neocortical neurons. The present study analyses the role of spontaneous bioelectrical activity (SBA) and neurotrophic factors on the expression of neuropeptide Y (NPY) in rat visual cortical neurons using organotypic monocultures prepared from newborn animals and in situ hybridization to detect the NPY messenger ribonucleic acid (mRNA). Spontaneously active cortex cultures display NPY mRNA expression in about 7% of all cortical neurons from 10 days in vitro (DIV) on. Blocking the SBA by chronic application of 10 mM Mg2+ for 3-30 DIV reduces the percentage of NPY neurons to about 2%. Allowing an initial phase of SBA (1-20 DIV) followed by an SBA blockade (for 21-50 DIV) results in 2% labelled neurons, indicating a dramatic reduction of NPY mRNA expression in the absence of SBA. Surprisingly, the reverse experiment (a period of SBA blockade for 1-20 DIV followed by a period of SBA recovery for 21-40 DIV) does not cause an upregulation of NPY mRNA expression. However, allowing cultures to differentiate as spontaneously active cultures, then applying a transient period of SBA blockade which is followed by a second period of SBA, does rescue the NPY mRNA expression in 7% of the cortical neurons. We conclude that SBA is a main trigger for NPY mRNA expression and it is particularly important during an early postnatal period of differentiation. We then analysed whether neurotrophic factors known to modulate cortical neuropeptide expression are able to do so in the absence of SBA. Supplementing chronically blocked cultures with the neurotrophins, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5) and the cytokine, leukaemia inhibitory factor (LIF), reveals that BDNF and NT-3 are unable to increase the percentage of NPY neurons. In contrast, LIF and NT-4/5 increase the percentage of NPY neurons to 4 and 6-7%, respectively. Moreover, neurons treated with NT-4/5 display a very high level of NPY mRNA expression in somata and in the dendritic trees. The data suggest a complex interplay and a hierarchy of epigenetic factors in regulating the neurochemical architecture of the developing neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号