首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CIGS Thin Films for Cd-Free Solar Cells by One-Step Sputtering Process   总被引:1,自引:0,他引:1  
Cu(In1?x Ga x )Se2 (CIGS) thin films were deposited by a one-step radio frequency (RF) magnetron sputtering process using a quaternary CIGS target. The influence of substrate temperature on the composition, structure, and optical properties of the CIGS films was investigated. All the CIGS films exhibited the chalcopyrite structure with a preferential orientation along the (112) direction. The CIGS film deposited at 623 K showed significant improvement in film crystallinity and surface morphology compared to films deposited at 523 and 573 K. To simplify the manufacturing procedure of solar cells and avoid the use of the toxic element Cd, the properties of ZnS films prepared by RF sputtering were also investigated. The results revealed that the sputtered ZnS film exhibits good lattice matching with the sputtered CIGS film with significantly lower optical absorption loss. Finally, all-sputtered Cd-free CIGS-based heterojunction solar cells with the structure SLG/Mo/CIGS/ZnS/AZO/Al grids were fabricated without post-selenization. Furthermore, the results demonstrated the feasibility of using a full sputtering process for the fabrication of Cd-free CIGS-based solar cell.  相似文献   

2.
采用磁控溅射方法,在不锈钢箔上制备多横向界 面Mo(M-Mo,multi-transverse interface Mo)和单横向界面Mo(S-Mo)薄 膜,并利用共蒸发三步法分别在M-Mo和S-Mo薄膜上制备Cu(In,Ga)Se2(CIGS)薄膜及 器件。通过二次离子质谱仪(SIMS)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)研究了不同 结构的Mo薄膜对CIGS影响。通过I-V测试,表征M-Mo和S -Mo作为背电极的CIGS电池电学性能。XRD结果显示,M-Mo和S-Mo 薄膜均以(110)为择优取向。SEM结果显示,M-Mo薄膜相对 于S-Mo,薄膜晶粒 较小,粗糙度较大。J-V测试结果显示,M-Mo薄膜作为背 电极的电池的开路电压Voc、短路电流J sc和填充因子(FF)均有所提高。  相似文献   

3.
A CuIn1-xGaxSe2 (CIGS) thin film solar cell model with MoSe2 transition layer was established, using SCAPS-1D software. The influence of MoSe2 interface layer formed between absorption layer CIGS and the back contact Mo on the solar cell performance was investigated.By changing the doping concentration,thickness and bandgap of MoSe2 layer, it is found that the MoSe2 and the variation of parameters have a significant effect on the electrical characteristics and photovoltaic parameters of CIGS thin film solar cells. Based on the energy band, the interfaces of Mo/MoSe2 and MoSe2/CIGS are analyzed. It is considered that Mo/MoSe2 is a Schottky contact, MoSe2/CIGS is an ohmic contact. When suitable parameters of MoSe2 layer are formed into the interface, it will provide a new path for designing CIGS solar cells with thinner absorption layer.  相似文献   

4.
The influences of process parameters and Fe diffusing into Cu(In,Ga)Se2 (CIGS) films on the orientation of CIGS absorbers grown on the stainless steel (SS) foils are investigated. The structural properties, morphology, and elemental profiles are characterized using X‐ray diffraction, scanning electron microscopy, and second ion mass spectroscopy, respectively. The orientation of CIGS thin films on the SS substrates strongly depends on the texture of the (In,Ga)2Se3 precursor, determined by the substrate temperature at the first stage (Ts1) and the flux ratio of Se to (In + Ga). Among these factors, Ts1 is the prerequisite to achieve [300]‐oriented IGS layer, which will yield [200]‐oriented CIGS thin film in the later process. The results indicate that through the comparison of CIGS thin films on the Mo/SS substrates and on the Mo/ZnO/SS substrates and combined with simply calculation, Fe diffusing into the CIGS layer will hinder the growth of the CIGS grains along [112] orientation. The grazing‐incidence X‐ray diffraction results suggest that the surface of the [220]‐textured CIGS thin film on the SS substrate still has [220] predominance, whereas the surface texture of the [220]‐texture CIGS thin film on the Mo/soda‐lime glass substrate became [112] predominant, which is due to the different compensation ability between Fe and Na elements. Finally, the relations between the device parameters and the degrees of the preferred orientation of CIGS absorbers are investigated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We have determined the activation energies of sodium diffusion from the soda‐lime glass substrate through the Mo back‐contact layer, as well as through copper indium gallium diselenide (CIGS) deposited on the Mo back‐contact layer of CIGS thin‐film solar cells. The activation energies were determined by X‐ray photoelectron spectroscopy (XPS) to measure surface sodium concentrations before and after thermally induced diffusion. The activation energies were found to be similar for the diffusion of Na through the Mo/glass and CIGS/Mo/glass thin films, approximately 8·6 and 9·6 kcal/mol, respectively. Furthermore, the sodium diffusion was found to occur by annealing in an environment of 1·0×10−5 Torr of air, oxygen, or water vapor, but not in vacuum of less than 1×10−8 Torr. In addition, the diffusion of Na was found to occur faster in the presence of oxygen than in water under identical annealing conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The main challenge in the deposition of molybdenum thin films for high efficiency in copper indium gallium selenide (CIGS) modules lies in gaining an adherent coating without compromising conductivity and reflectance characteristics. In this study, Mo thin films were deposited on soda-lime glass by DC magnetron sputtering at different deposition power (55, 100, 200 and 300 W) and with high working gas pressure (2 and 4 Pa). Analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall effect were employed to analyze the structure, morphology and electrical resistivity of the deposited films. Ultraviolet–visible (UV–Vis) spectrometry was performed to measure the reflectance and a cross-hatch adhesion tape test was employed to determine the adhesion behavior of deposited films. With higher sputtering power and reduced gas pressure, an increase in the crystallite size of the deposited films was observed. Films deposited at higher gas pressure were found with tensile stresses and higher adhesion with the substrate. The van der Pauw method reveals an increase in conductivity at high power and low gas pressure. Improved reflectance was achieved at moderate sputtering power and low gas pressure.  相似文献   

7.
Cu(0.5 at.%Mg) alloy films were deposited on glass substrates, and annealed at 200–400 °C in vacuum. The resistivity of the Cu(Mg) films was reduced to about 3.0 μΩcm after annealing at 200 °C for 30 min, and the tensile strength of adhesion of the Cu(Mg) films to the glass substrates was increased to 30–40 and 35–55 MPa after annealing at 250 and 300 °C, respectively. The reduction in resistivity can be explained as reduced impurity scattering and grain-boundary scattering, since Mg segregation to the film surface and Cu(Mg)/glass interface, and consequent Cu grain growth, were observed. Increased adhesion of the Cu(Mg) films to glass substrates after annealing was also explained by the strong segregation of Mg atoms, and the formation of a reaction layer at the interface. Mg atoms were observed to have reacted with the glass substrates and formed a thin crystalline MgO layer at the interface in the samples annealed at 300 °C, while Mg atoms were highly concentrated above the Cu(Mg)/glass interface without oxide formation at the interface in the samples annealed at 250 °C. Thus, the process temperature and time to obtain low-resistivity and high-adhesion Cu alloy films on glass substrates could be reduced to 250 °C and 30 min using Cu(Mg) films.  相似文献   

8.
Highly oriented crystalline aluminum doped zinc oxide (AZO) films were sputter deposited on glass substrates and a systematic investigation on the as deposited and etched films was reported for its further application in silicon thin film solar cell. Influence of the deposition pressure (from 2 to 8 mTorr) and post-annealing temperature (at 400 °C for 5 min) on the structural, optical and electrical properties of the as-deposited and etched samples were analyzed. The optimum condition for its reproducibility and large area deposition is determined and found that the depositions made at 8 mTorr at 200 W having the distance from source to substrate of 9 cm. All the AZO films exhibited a c-axis preferred orientation perpendicular to the substrate and their crystallinity was improved after annealing. From the XRD pattern the grain size, stress and strain of the films were evaluated and there is no drastic variation. Optical transmittance, resistivity, Hall mobility and carrier concentration for the as deposited and etched-annealed films were found to improve from 79 to 82%; 2.97 to 3.14×10−4 Ω cm; 25 to 38 cm2/V s; 8.39 to 5.96×1020/cm3 respectively. Based on the triangle diagram between figure of merit and Hall mobility, we obtained a balance of point between the electrical and optical properties to select the deposition condition of film for device application.  相似文献   

9.
Sputter deposited molybdenum (Mo) thin films are used as back contact layer for Cu(In1−xGax)(Se1−ySy)2 based thin film solar cells. Desirable properties of Mo films include chemical and mechanical inertness during the deposition process, high conductivity, appropriate thermal expansion coefficient with contact layers and a low contact resistance with the absorber layer. Mo films were deposited over soda-lime glass substrates using DC-plasma magnetron sputtering technique. A 23 full factorial design was made to investigate the effect of applied power, chamber pressure, and substrate temperature on structural, morphological, and electrical properties of the films. All the films were of submicron thickness with growth rates in the range of 34–82 nm/min and either voided columnar or dense growth morphology. Atomic force microscope studies revealed very smooth surface topography with average surface roughness values of upto 17 nm. X-ray diffraction studies indicated, all the films to be monocrystalline with (001) orientation and crystallite size in the range of 4.6–21 nm. The films exhibited varying degrees of compressive or tensile residual stresses when produced at low or high chamber pressure. Low pressure synthesis resulted in film buckling and cracking due to poor interfacial strength as characterized by failure during the tape test. Measurement of electrical resistivity for all the films yielded a minimum value of 42 μΩ cm for Mo films deposited at 200 W DC power.  相似文献   

10.
We investigated the effects of the microstructures of molybdenum (Mo) back contacts on sodium (Na) diffusion from sodalime glass into a Cu(In,Ga)Se2 (CIGS) absorber as a function of the sputter deposition pressure during preparation of the Mo contact layer. The surface characteristics of the Mo layers more significantly affected the diffusion of Na ions into the CIGS compared with the Mo bulk. The Na ion diffusion depended strongly on the amount of oxygen adsorbed onto the Mo layer surfaces. Secondary ion mass spectroscopy results showed that Na accumulated in a layer (Na–O compound) on the Mo surface (the CIGS/Mo interface), and this layer served as a primary source of Na ions diffusing into the CIGS. A trilayered Mo back contact structure was prepared in an effort to decouple the functions of electrical conductance and Na diffusion. The ability of this surface to control the Na concentration in a CIGS absorber is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper addresses the influences of film thickness on structural and electrical properties of dc magnetron sputter-deposited copper (Cu) films on p-type silicon. Cu films with thicknesses of 130-1050 nm were deposited from Cu target at sputtering power of 125 W in argon ambient gas pressure of 3.6 mTorr at room temperature. The electrical and structural properties of the Cu films were investigated by four-point probe, atomic force microscopy (AFM) as well as X-ray diffraction (XRD). Results from our experiment show that the grain grows with increasing film thickness, along with enhanced film crystallinity. The root mean square (RMS) roughness as well as the lateral feature size increase with the Cu film thickness, which is associated with the increase in the grain size. On the other hand, the Cu film resistivity decreases to less than 5 μΩ-cm for 500 nm thick film, and further increase in the film thickness has no significant effects on the film resistivity. Possible mechanisms of film thickness dependent microstructure formation of these Cu films are discussed in the paper, which explain the interrelationship of grain growth and film resistivity with increasing Cu film thickness.  相似文献   

12.
Deposition of Cu(In,Ga)Se2 (CIGS) thin film solar cells on metallic substrate is an attractive approach for development of low cost solar modules. However, in such devices, special care has to be taken to avoid diffusion of impurities, such as Fe, Ni, and Cr, from the substrate into the active layers. In this work, the influence of Ni and Cr impurities on the electronic properties of CIGS thin film solar cells is investigated in detail. Impurities were introduced into the CIGS layer by diffusion during the CIGS deposition process from a Ni or Cr precursor layer below the Mo electrical back contact. A high temperature and a low temperature CIGS deposition process were applied in order to correlate the changes in the photovoltaic parameters with the amount of impurities diffused into the absorber layer. Solar cells with Ni and Cr impurities show a reduction in the device performance, whereas the effect was most pronounced in Ni containing devices. The presence of deep defect levels in the absorber layer was identified with admittance spectroscopy and can be related to Ni and Cr impurities, which diffused into the CIGS layer according to secondary ion mass spectroscopy depth profiles and inductively coupled plasma mass spectrometry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
CuIn1‐xGaxSe2 (CIGS) thin films were grown on Mo/soda lime glass using a reactive sputtering process in which a Se cracker was used to deliver reactive Se molecules. The Cu0·6 Ga0·4 and Cu0·4In0·6 targets were simultaneously sputtered under the delivery of reactive Se. The effects of Se flux on CIGS film deposition were investigated. The CIGS film growth rate decreased, and the surface roughness of a film increased as the Se flux increased. The [112] crystal orientation was dominant, and metallic crystal phases such as Cu9Ga4 and Cu16In9 in a film were disappearing with increasing Se flux. A solar cell fabricated using a 900‐nm CIGS film showed the power conversion efficiency of 8·6%, the highest value found in a sub‐micron thick CIGS solar cell related to a reactive sputtering process with metallic targets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ~20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.  相似文献   

15.
Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thin films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ~550 nm and electrical resistivity value of 0.57 × 10?4 Ω cm.  相似文献   

16.
The surface microstructures of molybdenum (Mo) back contacts were shown to play a crucial role in the preferred orientations of Cu(In,Ga)Se2 (CIGS) films. The lower surface density of Mo tends to drive the growth of CIGS films toward favoring a (220)/(204) orientation, attributed to the higher likelihood of a MoSe2 reaction. This work showed that the presence of a very thin layer on a Mo bilayer facilitated the tuning of the CIGS grain orientations from strongly favoring (112) to strongly favoring (220)/(204) without sacrificing the electrode conductivity. The efficiency of Na‐doped CIGS cells was increased toward decreasing Mo surface density, that is, increasing (220)/(204) CIGS orientation. Although slight changes in Na doping found between different Mo surface properties could contribute in part, the comparison with Na‐reduced CIGS cells showed that it was more likely due to the (220)/(204) orientation‐related enhancement of CdS/CIGS junction characteristics, which were possibly attributed to a favorable CdS reaction and a reduction in the defect metastabilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
姜伟龙 《光电子.激光》2010,(11):1657-1659
为改善聚酰亚胺(PI)衬底Cu(In,Ga)Se2(CIGS)薄膜的附着性,提出在NaF沉积前预先在Mo层上蒸发沉积100nm厚的In-Ga-Se(IGS)薄膜的新掺Na工艺。结果表明:这种IGS-NaF-CIGS式新工艺可显著改善CIGS薄膜的附着,而且CIGS薄膜材料和器件特性没有显著退化;新工艺促进了NaInSe2的生成,减少了In-Se二元相的残余,但也造成薄膜电阻率的升高和电池填充因子的下降,进而导致制备的PI衬底CIGS电池的转换效率由9.8%降至9.0%。综合考虑附着性的改善和器件效率的轻微下降,新工艺利大于弊,有很好的应用前景。  相似文献   

18.
In this work, the impacts of surface sulfurization of high‐quality Cu(In1−x,Gax)Se2 (CIGS) thin films deposited by three‐stage process on the film properties and the cell performance were investigated. The CIGS thin films were sulfurized at 550 °C for 30 min using H2S gas. The X‐ray photoelectron spectroscopy analysis revealed that sulfur atoms diffused into the CIGS surface layer and that the valence band minimum was lowered by the film sulfurization. The open circuit voltage (Voc) drastically increased from 0.590 to 0.674 V as a result of the sulfurization process. Temperature‐dependent current–voltage and capacitance–frequency measurements also revealed that interface recombination was drastically decreased by the lowering of the defect's activation energy level at the vicinity of the buffer/CIGS interface after the sulfurization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this work we present the electrical characterization of ZnO-based thin-film transistors fabricated at room temperature. The ZnO films were deposited by radiofrequency magnetron sputtering at variable argon pressure (3 mTorr to 10 mTorr) at room temperature. The sputtered ZnO films were polycrystalline with hexagonal structure and electrical resistivity ranging from 101 Ω cm to 108 Ω cm for films deposited from 3 mTorr to 10 mTorr. The trend in the electrical behavior of the devices was found to be due to the variation of the electron concentration of the ZnO films. The devices with better performance showed a field-effect mobility of 2.9 cm2/Vs, threshold voltage of 20 V, I on/I off ≈ 106, and electrical resistivity of ~108 Ω cm. In addition, linear behavior of I on/I off with deposition pressure was observed. The lowest I on/I off ratio (~2) was calculated for devices with ZnO layers deposited at 3 mTorr, and the highest ratio (~106) for devices processed at 10 mTorr. Hall-effect measurements were performed on ZnO films showing the lowest resistivity. The layer grown at 3 mTorr showed a Hall mobility of μ H = 8.9 cm2/Vs and carrier concentration of n = 4.2 × 1016 cm−3 with resistivity of ρ = 31.8 Ω cm. For films deposited at 5 mTorr, the Hall mobility, carrier concentration, and resistivity were μ H = 7.9 cm2/Vs, n = 3.4 × 1016 cm−3, and ρ = 38.4 Ω cm, respectively. Films deposited at 8 mTorr and 10 mTorr could not be measured due to their high resistance.  相似文献   

20.
Transparent conducting Nb-doped titanium oxide (NTO) films were deposited on a non-alkali glass substrate using an RF magnetron sputtering method with post-annealing. Structural, electrical and optical properties of the NTO films were found to be strongly dependent on film thickness. A resistivity of 4.2 × 10?3 Ω cm and an average visible transmittance of ~70% were obtained at the film thickness of 360 nm, indicating that the polycrystalline NTO fabricated by the sputtering method has sufficient potential as a transparent conducting oxide (TCO) candidate for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号