首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow shop scheduling problem consists of scheduling given jobs with same order at all machines. The job can be processed on at most one machine; meanwhile one machine can process at most one job. The most common objective for this problem is makespan. However, multi-objective approach for scheduling to reduce the total scheduling cost is important. Hence, in this study, we consider the flow shop scheduling problem with multi-objectives of makespan, total flow time and total machine idle time. Ant colony optimization (ACO) algorithm is proposed to solve this problem which is known as NP-hard type. The proposed algorithm is compared with solution performance obtained by the existing multi-objective heuristics. As a result, computational results show that proposed algorithm is more effective and better than other methods compared.  相似文献   

2.
求解工件车间调度问题的一种新的邻域搜索算法   总被引:7,自引:1,他引:7  
王磊  黄文奇 《计算机学报》2005,28(5):809-816
该文提出了一种新的求解工件车间调度(job shop scheduling)问题的邻域搜索算法.问题的目标是:在满足约束条件的前提下使得调度的makespan尽可能地小.定义了一种新的优先分配规则以生成初始解;定义了一种新的邻域结构;将邻域搜索跟单机调度结合在一起;提出了跳坑策略以跳出局部最优解并且将搜索引向有希望的方向.计算了当前国际文献中的一组共58个benchmark问题实例,算法的优度高于当前国外学者提出的两种著名的先进算法.其中对18个10工件10机器的实例,包括最著名的难解实例ft10,在可接受的时间内都找到了最优解.这些实例是当前文献中报导的所有规模为10工件10机器的实例.  相似文献   

3.
The order in which jobs pass through machines or work centres is a sequencing problem. The sequencing problems occur in flow shop as well as job shop production systems. In flow shop production systems, each job follows the same processing route whereas in the job shop production system, jobs flow across machines or work stations on many different routes. For optimizing the sequencing of such jobs, production planners may adopt different criteria such as makespan time, average completion time, due date performance, machine utilization and so forth. In the absence of given criteria, it is usual to accept the makespan time as the criteria and to attempt to minimize this. In a 2-machines flow shop, the jobs can be sequenced optimally for minimum total makespan time by using Johnson's algorithm [1]. Johnson's algorithm can also be used to find the optimal sequence for special three-machines flow shop problems satisfying certain conditions [1]. But for general three-machines sequencing problems, optimal sequence based on makespan time can be obtained by using a branch and bound solution procedure [1].

In this paper, the branch-and-bound procedure have been used to develop an interactive program in BASIC for finding the optimal job sequence for general three-machines flow shop problems. This program which is written for an IBM-PC or IBM-PC compatibles, also provides the time chart and the time chart drawing. Furthermore, it gives the results of the branching steps (i.e the partial sequences) in a tabular form.  相似文献   


4.
This paper deals with a stochastic group shop scheduling problem. The group shop scheduling problem is a general formulation that includes the other shop scheduling problems such as the flow shop, the job shop and the open shop scheduling problems. Both the release date of each job and the processing time of each job on each machine are random variables with known distributions. The objective is to find a job schedule which minimizes the expected makespan. First, the problem is formulated in a form of stochastic programming and then a lower bound on the expected makespan is proposed which may be used as a measure for evaluating the performance of a solution without simulating. To solve the stochastic problem efficiently, a simulation optimization approach is developed that is a hybrid of an ant colony optimization algorithm and a heuristic algorithm to generate good solutions and a discrete event simulation model to evaluate the expected makespan. The proposed approach is tested on instances where the random variables are normally, exponentially or uniformly distributed and gives promising results.  相似文献   

5.
This paper addresses a shop scheduling problem for the side frame press shop in a truck manufacturing company. In the problem, a set of n jobs to be scheduled on two machines. All the jobs require processing by the first machine more than once in their operation sequences with reentrant work flows. An unusual aspect of the problem is that the setup times required for a job in the first machine depend not on the immediately preceding job but on the job which is two steps prior to it. Redefining the job elements, the problem is formulated into a general two machine flow shop problem which has a set of job-element precedence constraints. The problem is solved with a modified dynamic programming with the objective of the minimum makespan. An optimal schedule is found utilizing the sequence dominance condition and a decision-delay scheme. A numerical example is presented for the illustration purpose.  相似文献   

6.

The open shop is a classical scheduling problem known since 1976, which can be described as follows. A number of jobs have to be processed by a given set of machines, each machine should perform an operation on every job, and the processing times of all the operations are given. One has to construct a schedule to perform all the operations to minimize finish time also known as the makespan. The open shop problem is known to be NP-hard for three and more machines, while is polynomially solvable in the case of two machines. We consider the routing open shop problem, being a generalization of both the open shop problem and the metric traveling salesman problem. In this setting, jobs are located at nodes of a transportation network and have to be processed by mobile machines, initially located at a predefined depot. Machines have to process all the jobs and return to the depot to minimize makespan. A feasible schedule is referred to as normal if its makespan coincides with the standard lower bound. We introduce the Irreducible Bin Packing decision problem, use it to describe new sufficient conditions of normality for the two machine problem, and discuss the possibility to extend these results on the problem with three and more machines. To that end, we present two new computer-aided optima localization results.

  相似文献   

7.
Scheduling jobs under decreasing linear deterioration   总被引:1,自引:0,他引:1  
This paper considers the scheduling problems under decreasing linear deterioration. Deterioration of a job means that its processing time is a function of its execution start time. Optimal algorithms are presented respectively for single machine scheduling of minimizing the makespan, maximum lateness, maximum cost and number of late jobs. For two-machine flow shop scheduling problem to minimize the makespan, it is proved that the optimal schedule can be obtained by Johnson's rule. If the processing times of operations are equal for each job, flow shop scheduling problems can be transformed into single machine scheduling problems.  相似文献   

8.
We present a genetic algorithm (GA) based heuristic approach for job scheduling in virtual manufacturing cells (VMCs). In a VMC, machines are dedicated to a part as in a regular cell, but machines are not physically relocated in a contiguous area. Cell configurations are therefore temporary, and assignments are made to optimize the scheduling objective under changing demand conditions. We consider the case where there are multiple jobs with different processing routes. There are multiple machine types with several identical machines in each type and are located in different locations in the shop floor. Scheduling objective is weighted makespan and total traveling distance minimization. The scheduling decisions are the (i) assignment of jobs to the machines, and (ii) the job start time at each machine. To evaluate the effectiveness of the GA heuristic we compare it with a mixed integer programming (MIP) solution. This is done on a wide range of benchmark problem. Computational results show that GA is promising in finding good solutions in very shorter times and can be substituted in the place of MIP model.  相似文献   

9.
This paper investigates a difficult scheduling problem on a specialized two-stage hybrid flow shop with multiple processors that appears in semiconductor manufacturing industry, where the first and second stages process serial jobs and parallel batches, respectively. The objective is to seek job-machine, job-batch, and batch-machine assignments such that makespan is minimized, while considering parallel batch, release time, and machine eligibility constraints. We first propose a mixed integer programming (MIP) formulation for this problem, then gives a heuristic approach for solving larger problems. In order to handle real world large-scale scheduling problems, we propose an efficient dispatching rule called BFIFO that assigns jobs or batches to machines based on first-in-first-out principle, and then give several reoptimization techniques using MIP and local search heuristics involving interchange, translocation and transposition among assigned jobs. Computational experiments indicate our proposed re-optimization techniques are efficient. In particular, our approaches can produce good solutions for scheduling up to 160 jobs on 40 machines at both stages within 10?min.  相似文献   

10.
On the Complexity of Non-preemptive Shop Scheduling with Two Jobs   总被引:1,自引:0,他引:1  
Tamás Kis 《Computing》2002,69(1):37-49
In this note, we investigate the time complexity of non-preemptive shop scheduling problems with two jobs. First we study mixed shop scheduling where one job has a fixed order of operations and the operations of the other job may be executed in arbitrary order. This problem is shown to be binary NP-complete with respect to all traditional optimality criteria even if distinct operations of the same job require different machines. Moreover, we devise a pseudo-polynomial time algorithm which solves the problem with respect to all non-decreasing objective functions. Finally, when the job with fixed order of operations may visit a machine more than once, the problem becomes unary NP-complete. Then we discuss shop scheduling with two jobs having chain-like routings. It is shown that the problem is unary NP-complete with respect to all traditional optimality criteria even if one of the jobs has fixed order of operations and the jobs cannot visit a machine twice. Received July 28, 2001; revised May 15, 2002 Published online: July 26, 2002  相似文献   

11.
This paper considers a two-stage hybrid flow shop scheduling problem with dedicated machines, in which the first stage contains a single common critical machine, and the second stage contains several dedicated machines. Each job must be first processed on the critical machine in stage one and depending on the job type, the job will be further processed on the dedicated machine of its type in stage two. The objective is to minimize the makespan. To solve the problem, a heuristic method based on branch and bound (B&B) algorithm is proposed. Several lower bounds are derived and four constructive heuristics are used to obtain initial upper bounds. Then, three dominance properties are employed to enhance the performance of the proposed heuristic method. Extensive computational experiments on two different problem categories each with various problem configurations are conducted. The results show that the proposed heuristic method can produce very close-to-optimal schedules for problems up to 100 jobs and five dedicated machines within 60 s. The comparisons with solutions of two other meta-heuristic methods also prove the better performance of the proposed heuristic method.  相似文献   

12.
We consider the problem of scheduling jobs on two parallel identical machines where an optimal schedule is defined as one that gives the smallest makespan (the completion time of the last job) among the set of schedules with optimal total flowtime (the sum of the completion times of all jobs). We propose an algorithm to determine optimal schedules for the problem, and describe a modified multifit algorithm to find an approximate solution to the problem in polynomial computational time. Results of a computational study to compare the performance of the proposed algorithms with a known heuristic shows that the proposed heuristic and optimization algorithms are quite effective and efficient in solving the problem.Scope and purposeMultiple objective optimization problems are quite common in practice. However, while solving scheduling problems, optimization algorithms often consider only a single objective function. Consideration of multiple objectives makes even the simplest multi-machine scheduling problems NP-hard. Therefore, enumerative optimization techniques and heuristic solution procedures are required to solve multi-objective scheduling problems. This paper illustrates the development of an optimization algorithm and polynomially bounded heuristic solution procedures for the scheduling jobs on two identical parallel machines to hierarchically minimize the makespan subject to the optimality of the total flowtime.  相似文献   

13.
Two-machine flow shops are widely adopted in manufacturing systems. To minimize the makespan of a sequence of jobs, joint optimization of job scheduling and preventive maintenance (PM) planning has been extensively studied for such systems. In practice, the operating condition (OC) of the two machines usually varies from one job to another because of different processing covariates, which directly affects the machines’ failure rates, PM plans, and expected job completion times. This fact is common in many real systems, but it is often overlooked in the related literature. In this study, we propose a joint decision-making strategy for a two-machine flow shop with resumable jobs. The objective is to minimize the expected makespan by taking into account job-dependent OC. We consider two situations. In the first situation, where the failure rate of a machine under a fixed OC is constant, a hybrid processing time model is proposed to obtain the optimal job sequence based on the Johnson's law. For the second situation, where the failure rate of a machine is time-varying, the job sequence and PM plan are jointly optimized. An enumeration method is adopted to find the optimal job sequence and PM plan for a small-scale problem, and a genetic algorithm-based method is proposed to solve a large-scale problem. Numerical examples are provided to demonstrate the necessity of considering the effect of job-dependent OC and the effectiveness of the proposed method in handing such joint decision-making problems in manufacturing systems.  相似文献   

14.
分析生产车间的实际生产状况,建立了考虑工件移动时间的柔性作业车间调度问题模型,该模型考虑了以往柔性作业车间调度问题模型所没有考虑的工件在加工机器间的移动时间,使柔性作业车间调度问题更贴近实际生产,让调度理论更具现实性。通过对已有的改进遗传算法的遗传操作进行重构,设计出有效求解考虑工件移动时间的柔性作业车间调度问题的改进遗传算法。最后对实际案例进行求解,得到调度甘特图和析取图,通过对甘特图和析取图的分析验证了所建考虑工件移动时间的柔性作业车间调度问题模型的可行性和有效性。  相似文献   

15.
A new unrelated parallel machine scheduling problem with deteriorating effect and the objective of makespan minimization is presented in this paper. The deterioration of each machine (and therefore of the job processing times) is a function of the sequence of jobs that have been processed by the machine and not (as considered in the literature) by the time at which each job is assigned to the machine or by the number of jobs already processed by the machine. It is showed that for a single machine the problem can be solved in polynomial time, whereas the problem is NP-hard when the number of machines is greater or equal than two. For the last case, a set of list scheduling algorithms and simulated annealing meta-heuristics are designed and the effectiveness of these approaches is evaluated by solving a large number of benchmark instances.  相似文献   

16.
Scheduling has been and continues to be a major issue in production planning. Job shop scheduling is one area where a considerable amount of research has been and continues to be pursued. Usual emphasis is on one machine per work center job shop scheduling. There appears to be very limited literature available on scheduling a job shop problem which requires scheduling of n jobs in m machine centers where each machine center may have k number of identical processors (though the number of identical processors may vary from one machine center to next). We discuss here, the problem of minimize of the makespan for such a job shop arrangement The problem can be represented by the symbol m x n x k.  相似文献   

17.
This paper deals with a scheduling problem in a metal mould assembly process. The process is of job shop type with several additional constraints. One constraint is that precedence relations exist not only among operations but also among jobs. The other constraint is that the system has two types of machines in parallel. The single-function machine executes a specific operation of each job and the multi-function machine can execute several operations. Therefore selection of the machine is necessary for executing each operation. In addition the problem has two objective functions. One is to minimize the sum of the tardiness of each job, and the other is to maximize the working time of the multi-function machine because of reducing the operating cost of machines. An autonomous decentralized scheduling algorithm is proposed to obatin a compromise solution of the multi-objective problem. In this algorithm, a number of decision makers are called subsystems, which co-operate with one another in order to attain the goal of the overall system. In our algorithm, all jobs and the set of multi-function machine are defined as the subsystem because their objective functions are competitive. They determine the scheduling plan on the basis of their co-operation and the satisfaction of their own objective function levels. The effectiveness of the algorithm is investigated by examining numerical results.  相似文献   

18.
宫华  许可  孙文娟 《控制与决策》2023,38(7):1942-1950
研究二机流水车间生产运输协调调度问题,当工件在第1台机器加工完成后,由1台带有容量限制的运输车分批次运输到第2台机器加工,运输过程考虑工件尺寸约束,目标函数为最小化最大完工时间.考虑到源于不同客户的工件对机器及运输设备的竞争,以工件为博弈方,工件在生产运输过程中等待时间为策略,各工件完工时间为收益,建立非合作博弈模型.通过将问题转化为马尔可夫决策过程,设计线性逼近值函数的Q-learning算法求解纳什均衡调度.实验结果表明Q-learning算法求得的纳什均衡调度具有较好的全局最优性,从而能够在满足客户的利益下,提高企业的生产效率,实现客户与企业的双赢.  相似文献   

19.
This paper presents a genetic algorithm-based job-shop scheduler for a flexible multi-product, parallel machine sheet metal job shop. Most of the existing research has focused only on permutation job shops in which the manufacturing sequence and routings are strictly in a predefined order. This effectively meant that only the jobs shops with little or no flexibility could be modeled using these models. The real life job shops may have flexibility of routing and sequencing. Our paper proposes one such model where variable sequences and multiple routings are possible. Another limitation of the existing literature was found to be negligence of the setup times. In many job shops like sheet metal shops, setup time may be a very sizable portion of the total make-span of the jobs, hence setup times will be considered in this work. One more flexibility type arises as a direct consequence of the routing flexibility. When there are multiple machines (parallel machines) to perform the same operation, the job could be routed to one or more of these machines to reduce the make-span. This is possible in situations where each job consists of a pre-defined quantity of a specified product. In other words, same job is quantity-wise split into two or more parts whenever it reduces the makespan. This effectively assumes that the setup cost is negligible. This model has been implemented on a real-life industry problem using VB.Net programming language. The results from the scheduler are found to be better than those obtained by simple sequencing rules.  相似文献   

20.
郝井华  刘民  刘屹洲  吴澄  张瑞 《控制工程》2005,12(6):520-522,526
针对纺织生产过程中广泛存在的带特殊工艺约束的大规模并行机调度问题,提出了一种基于分解的优化算法。首先将原调度问题分解为机台选择和工件排序两个子问题,然后针对机台选择子问题提出一种进化规划算法,并采用一种具有多项式时间复杂度的最优算法求解工件排序子问题,以得到问题特征信息(即每台机器对应拖期工件数的最小值),该问题特征信息用以指导进化规划算法的迭代过程。不同规模并行机调度问题的数值计算结果及实际制造企业应用效果表明,本文提出的算法是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号