首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
薛栋林 《光学精密工程》2008,16(12):2491-2496
为了实现某大口径碳化硅材料凸非球面反射镜检验,研究了无像差点法以及补偿检验法方案,经过方案比较优选,确定选用补偿检验方案并专门设计了高精度大口径非球面补偿器,设计精度为PV:0.0082,RMS:0.0029(=0.6328nm),采用会聚光束、使用大口径数字干涉仪进行凸非球面正面检测,采用该方法进行检验凸非球面反射镜最终检测结果为0.022(RMS)本文所述补偿器的设计方法和要求具有普遍性,设计结果也可用于同类型大口径凸非球面检验用补偿器的设计。采用该方法提高了凸非球面检测精度,并且在凸非球面镜的材料选择、结构设计、支撑方式等方面提供了更多的优化空间,为新型光学材料在凸非球面反射镜的应用铺平了道路。  相似文献   

2.
高精度离轴凸非球面反射镜的加工及检测   总被引:4,自引:1,他引:3  
张峰 《光学精密工程》2010,18(12):2557-2563
为了提高离轴凸非球面反射镜的面形精度和光轴精度,研究了离轴凸非球面反射镜的加工与检测技术。首先,描述了离轴三反消像散(TMA)光学系统以及作为该光学系统次镜的离轴凸非球面反射镜的光学参数和技术指标。然后,介绍了非球面计算机控制光学表面成型(CCOS)技术及FSGJ非球面数控加工设备。最后,给出了非球面研磨阶段检测用的轮廓测量法和离轴凸非球面抛光阶段检测用的背部透射零位补偿检测法,并对背部透射零位补偿检测中离轴凸非球面反射镜光轴精度的控制技术进行了研究。检测结果表明:采用背部透射零位补偿检测法检测得到的离轴凸非球面反射镜的面形精度为0.017λ(均方根值,λ=0.632 8μm);用Leica经纬仪测量反射镜的光轴精度其结果达到9.4″,满足光学设计技术指标要求。  相似文献   

3.
用于Φ1200 F/1.5主镜面形检验的补偿器,需要补偿0.087mm的非球面度,并实现0.033λ(RMS)面形检测要求。详细介绍了该补偿器的设计、误差分析、加工、标校及最终主镜检测的情况;用于主镜检测前用计算全息(CGH)对补偿器标校显示:补偿器产生的抛物面面形误差为0.012λ(RMS),二次曲面常数K的误差0.0064%;主镜最终的补偿检测结果为:面形0.027λ(RMS),二次曲面常数K的误差0.0306%,与分析的结果相符合。结果表明:补偿器设计合理,建立的误差分析原则和方法可行,加工质量可靠,这将为更大口径高陡度非球面主镜的补偿检验奠定坚实基础。  相似文献   

4.
用于Ф1.2mF/1.5主镜面形检验的补偿器,需要补偿0.087mm的非球面度,并满足0.033λ(RMS)面形检测要求。介绍了该补偿器的设计、误差分析、加工、标校及最终主镜检测的情况。主镜检测前用计算全息(CGH)对补偿器标校显示:补偿器产生的抛物面面形误差为0.012λ(RMS),二次曲面常数K的误差为0.0064%;主镜最终补偿检测结果为:面形误差0.027λ(RMS),二次曲面常数K的误差为0.0306%,与分析的结果相符。结果表明,补偿器设计合理,建立的误差分析原则和方法可行,加工质量可靠,为更大口径高陡度非球面主镜的补偿检验奠定了坚实基础。  相似文献   

5.
Shack-Hartmann波前传感器检测大口径圆对称非球面反射镜   总被引:1,自引:0,他引:1  
针对大口径非球面反射镜在研磨阶段后期其面形与理想面形存在较大偏差,且表面粗糙度较大、反射率较低,采用轮廓仪和普通干涉仪检测无法满足测试要求等问题,提出采用动态范围大且精度高的Shack-Hartmann波前传感器来检测大口径非球面反射镜.研究分析了Shack-Hartmann波前传感器检测系统的原理及系统误差并编写了相应的数据处理软件.为了验证该方法的可行性,对已经加工完成的350 mm口径旋转对称双曲面面形进行了检测,测量得到的面形误差PV值、RMS值分别为0.388λ、0.043λ(λ=632.8 nm);与干涉测量的标准结果进行了对比,得到的面形偏差PV值、RMS值分别为0.014λ和0.001λ.对比结果表明,Shack-Hartmann波前传感器的测量结果正确可靠,从而验证了Shack-Hartmann波前传感器检测大口径非球面反射镜的可行性.  相似文献   

6.
针对大口径大相对孔径凹非球面反射镜加工检验困难的问题,提出了凹非球面的零位补偿检验方案。基于三级像差理论和单透镜的PW关系式,对双片式结构和三片式结构的补偿器的初始结构求解进行了理论推导。对多组初始补偿系统的像差特性进行分析和结构选型,利用光学设计软件对其进行像差平衡,能高效得到理想的优化结果。给出了一个口径为500mm、相对孔径为1/1.2的凹非球面的补偿器的整个设计过程,设计结果优良。  相似文献   

7.
矩形离轴非球面反射镜的数控加工   总被引:6,自引:6,他引:0  
针对离轴TMA结构空间相机中使用的两块离轴非球面反射镜的加工过程,提出了一种新型的矩形离轴非球面的最接近球面半径的求解及其优化方法,并且开发了基于计算机虚拟加工技术的CCOS工艺参数计算方法.被加工工件分别为165mm×100mm的矩形凸面离轴非球面和770mm×200mm的矩形轻量化凹面离轴非球面,设计精度分别为任意100mm,200mm子孔径面形精度优于0.025λRMS(λ=632.8nm).经检验,工件的加工精度满足了设计要求,分别达到了0.023λRMS和0.013λRMS.  相似文献   

8.
大口径轻质反射镜坯的制造   总被引:3,自引:3,他引:0  
给出了制造大口径轻质反射镜坯的机械法减重技术及所制造的反射镜坯.在镜坯制造过程中通过计算机辅助设计搜索轻量化加工区域的形状、大小、深度,并对其进行分类标识;编辑TPH(toolpath)轨迹数据文件,编写CNC(comput ernumbercontrol)数控系统的零件加工程序,由数控系统在图形方式下控制实际加工.同时采用化学方法消除加工过程中产生的应力与微小裂纹.加工出的大口径轻质反射镜坯达到设计要求,轻量化率达到65%以上,加工后的非球面面形精度达到0.029λ(rms,λ=633nm).制造过程中在不同支撑状态下,变形量很小,保持了非球面面形精度稳定性,显示出了结构的稳定性.该方法已经成为大口径反射镜制造的关键支撑技术.  相似文献   

9.
环形子孔径拼接干涉检测非球面的数学模型和仿真研究   总被引:12,自引:5,他引:7  
利用环形子孔径拼接干涉技术可以不需要补偿器、CGH等辅助元件就能够高分辨、低成本、高效地实现对大口径、大相对孔径非球面的检测.介绍了该技术的基本原理,并基于最小二乘法和Zernike多项式拟合建立了合理的数学模型,同时对其进行了计算机模拟实验,拼接前后全孔径相位分布残差的PV值和RMS值分别为0.0079λ和0.0027λ,说明该拼接模型和算法是准确可行的,从而提供了除零位补偿外又一种定量测试非球面尤其是大口径非球面的途径.  相似文献   

10.
为了在地面制造环境下实现大口径空间非球面反射镜的零重力面形加工,建立了基于重力卸载的高精度旋转检测工艺方法。首先对N次等间隔旋转法的基本原理进行了介绍,并结合一块Ф1 290mm ULE材料的非球面反射镜加工实例,分别给出了旋转法实施环节中的旋转角度和偏心误差控制方法,实际角度误差和偏心误差分别优于0.1°和0.1mm。然后,在低精度阶段采用了3次旋转法对检测结果进行处理,主镜面形精度快速收敛至0.029λ-RMS;同时由于应用旋转法而导致镜面上的对称性误差累积放大,进行了针对性去除,面形精度进一步收敛至0.023λ-RMS。最后,采用了6次旋转法对检测结果进行处理并指导光学加工,反射镜6个方向下的实测面形精度为0.012λ-RMS,去除重力变形误差后面形精度达到了0.010λ-RMS,该面形可以认为是卫星入轨后零重力空间环境下的反射镜面形。文中所述加工工艺方法不仅适用于米级口径,还适用于更大口径空间非球面反射镜零重力面形的高精度加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号